Patents by Inventor Visweswaren Sivaramakrishnan

Visweswaren Sivaramakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120208373
    Abstract: A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 16, 2012
    Applicant: Applied Materials, Inc.
    Inventors: DEENESH PADHI, Hyoung-Chan Ha, Sudha Rathi, Derek R. Witty, Chiu Chan, Sohyun Park, Ganesh Balasubramanian, Karthik Janakiraman, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Hichem M'Saad
  • Publication number: 20120204795
    Abstract: An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Publication number: 20120205046
    Abstract: An apparatus and method are provided for controlling the intensity and distribution of a plasma discharge in a plasma chamber. In one embodiment, a shaped electrode is embedded in a substrate support to provide an electric field with radial and axial components inside the chamber. In another embodiment, the face plate electrode of the showerhead assembly is divided into zones by isolators, enabling different voltages to be applied to the different zones. Additionally, one or more electrodes may be embedded in the chamber side walls.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Karthik Janakiraman, Thomas Nowak, Juan Carlos Rocha-Alvarez, Mark A. Fodor, Dale R. Du Bois, Amit Bansal, Mohamad A. Ayoub, Eller Y. Juco, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Patent number: 8197636
    Abstract: Embodiments described herein relate to a substrate processing system that integrates substrate edge processing capabilities. Illustrated examples of the processing system include, without limitations, a factory interface, a loadlock chamber, a transfer chamber, and one or more twin process chambers having two or more processing regions that are isolatable from each other and share a common gas supply and a common exhaust pump. The processing regions in each twin process chamber include separate gas distribution assemblies and RF power sources to provide plasma at selective regions on a substrate surface in each processing region. Each twin process chamber is thereby configured to allow multiple, isolated processes to be performed concurrently on at least two substrates in the processing regions.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 12, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Ashish Shah, Dale R. DuBois, Ganesh Balasubramanian, Mark A. Fodor, Eui Kyoon Kim, Chiu Chan, Karthik Janakiraman, Thomas Nowak, Joseph C. Werner, Visweswaren Sivaramakrishnan, Mohamad Ayoub, Amir Al-Bayati, Jianhua Zhou
  • Publication number: 20110300715
    Abstract: A method for fabricating a photovoltaic (PV) cell panel wherein all PV cells are formed simultaneously on a two-dimensional array of monocrystalline silicon mother wafers affixed to a susceptor is disclosed. Porous silicon separation layers are anodized in the surfaces of the mother wafers. The porous film is then smoothed to form a suitable surface for epitaxial film growth. An epitaxial reactor is used to grow n- and p-type films forming the PV cell structures. Contacts to the n- and p-layers are deposited, followed by gluing of a glass layer to the PV cell array. The porous silicon film is then separated by exfoliation in a peeling motion across all the cells attached together above, followed by attaching a strengthening layer on the PV cell array. The array of mother wafers may be reused multiple times, thereby reducing materials costs for the completed solar panels.
    Type: Application
    Filed: March 17, 2011
    Publication date: December 8, 2011
    Applicant: Crystal Solar, Incorporated
    Inventors: Tirunelveli S. Ravi, Ananda H. Kumar, Ashish Asthana, Visweswaren Sivaramakrishnan
  • Patent number: 7947611
    Abstract: A method for depositing a low dielectric constant film by flowing a oxidizing gas into a processing chamber, flowing an organosilicon compound from a bulk storage container through a digital liquid flow meter at an organosilicon flow rate to a vaporization injection valve, vaporizing the organosilicon compound and flowing the organosilicon compound and a carrier gas into the processing chamber, maintaining the organosilicon flow rate to deposit an initiation layer, flowing a porogen compound from a bulk storage container through a digital liquid flow meter at a porogen flow rate to a vaporization injection valve, vaporizing the porogen compound and flowing the porogen compound and a carrier gas into the processing chamber, increasing the organosilicon flow rate and the porogen flow rate while depositing a transition layer, and maintaining a second organosilicon flow rate and a second porogen flow rate to deposit a porogen containing organosilicate dielectric layer.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: May 24, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Dustin W. Ho, Juan Carlos Rocha-Alvarez, Alexandros T. Demos, Kelvin Chan, Nagarajan Rajagopalan, Visweswaren Sivaramakrishnan
  • Publication number: 20110104400
    Abstract: A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
    Type: Application
    Filed: January 10, 2011
    Publication date: May 5, 2011
    Inventors: Deenesh Padhi, Hyoung-Chan Ha, Sudha Rathi, Derek R. Witty, Chiu Chan, Sohyun Park, Ganesh Balasubramanian, Karthik Janakiraman, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Hichem M'Saad
  • Publication number: 20110090613
    Abstract: The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
    Type: Application
    Filed: November 19, 2010
    Publication date: April 21, 2011
    Inventors: Ganesh Balasubramanian, Amit Bansal, Eller Y. Juco, Mohamad Ayoub, Hyung-Joon Kim, Karthik Janakiraman, Sudha Rathi, Deenesh Padhi, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Amir Al-Bayati, Derek R. Witty, Hichem M'Saad, Anton Baryshnikov, Chiu Chan, Shuang Liu
  • Patent number: 7867578
    Abstract: A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: January 11, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Hyoung-Chan Ha, Sudha Rathi, Derek R. Witty, Chiu Chan, Sohyun Park, Ganesh Balasubramanian, Karthik Janakiraman, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Hichem M'Saad
  • Publication number: 20100263587
    Abstract: An epitaxial reactor enabling simultaneous deposition of thin films on a multiplicity of wafers is disclosed. During deposition, a number of wafers are contained within a wafer sleeve comprising a number of wafer carrier plates spaced closely apart to minimize the process volume. Process gases flow preferentially into the interior volume of the wafer sleeve, which is heated by one or more lamp modules. Purge gases flow outside the wafer sleeve within a reactor chamber to minimize deposition on the walls of the chamber. In addition, sequencing of the illumination of the individual lamps in the lamp module may further improve the linearity of variation in deposition rates within the wafer sleeve. To improve uniformity, the direction of process gas flow may be varied in a cross-flow configuration. Combining lamp sequencing with cross-flow processing in a multiple reactor system enables high throughput deposition with good film uniformities and efficient use of process gases.
    Type: Application
    Filed: February 25, 2010
    Publication date: October 21, 2010
    Applicant: Crystal Solar, Incorporated
    Inventors: Visweswaren Sivaramakrishnan, Kedarnath Sangam, Tirunelveli S. Ravi, Andrzej Kaszuba, Quoc Vinh Truong
  • Publication number: 20100215872
    Abstract: An epitaxial reactor enabling simultaneous deposition of thin films on a multiplicity of wafers is disclosed. During deposition, a number of wafers are contained within a wafer sleeve comprising a number of wafer carrier plates spaced closely apart to minimize the process volume. Process gases flow preferentially into the interior volume of the wafer sleeve, which is heated by one or more lamp modules. Purge gases flow outside the wafer sleeve within a reactor chamber to minimize wall deposition. In addition, sequencing of the illumination of the individual lamps in the lamp module may further improve the linearity of variation in deposition rates within the wafer sleeve. To improve uniformity, the direction of process gas flow may be varied in a cross-flow configuration. Combining lamp sequencing with cross-flow processing in a multiple reactor system enables high throughput deposition with good film uniformities and efficient use of process gases.
    Type: Application
    Filed: February 25, 2009
    Publication date: August 26, 2010
    Applicant: CRYSTAL SOLAR, INC.
    Inventors: Visweswaren Sivaramakrishnan, Kedarnath Sangam, Tirunelveli S. Ravi, Andrzej Kaszuba, Quoc Vinh Truong
  • Publication number: 20100145513
    Abstract: A robotic positioning system that cooperates with a sensing system to correct robot motion is provided. The sensing system is decoupled from the sensors used conventionally to control the robot's motion, thereby providing repeatable detection of the robot's true position. In one embodiment, the positioning system includes a robot, a controller, a motor sensor and a decoupled sensor. The robot has at least one motor for manipulating a linkage controlling the displacement of a substrate support coupled thereto. The motor sensor is provides the controller with motor actuation information utilized to move the substrate support. The decoupled sensor provides information indicative of the true position the substrate support that may be utilized to correct the robot's motion.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 10, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Pyongwon Yim, Satish Sundar, Vinay Shah, Mario David Silvetti, Douglas Kitajima, Venkatesh Babu, Visweswaren Sivaramakrishnan, Indrajit Lahiri, Surinder Bedi
  • Patent number: 7699935
    Abstract: A method and apparatus for cleaning a process chamber are provided. In one embodiment, a process chamber is provided that includes a remote plasma source and a process chamber having at least two processing regions. Each processing region includes a substrate support assembly disposed in the processing region, a gas distribution system configured to provide gas into the processing region above the substrate support assembly, and a gas passage configured to provide gas into the processing region below the substrate support assembly. A first gas conduit is configured to flow a cleaning agent from the remote plasma source through the gas distribution assembly in each processing region while a second gas conduit is configured to divert a portion of the cleaning agent from the first gas conduit to the gas passage of each processing region.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: April 20, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ramprakash Sankarakrishnan, Dale DuBois, Ganesh Balasubramanian, Karthik Janakiraman, Juan Carlos Rocha-Alvarez, Thomas Nowak, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Publication number: 20100012273
    Abstract: A method and apparatus for cleaning a process chamber are provided. In one embodiment, a process chamber is provided that includes a remote plasma source and a process chamber having at least two processing regions. Each processing region includes a substrate support assembly disposed in the processing region, a gas distribution system configured to provide gas into the processing region above the substrate support assembly, and a gas passage configured to provide gas into the processing region below the substrate support assembly. A first gas conduit is configured to flow a cleaning agent from the remote plasma source through the gas distribution assembly in each processing region while a second gas conduit is configured to divert a portion of the cleaning agent from the first gas conduit to the gas passage of each processing region.
    Type: Application
    Filed: October 1, 2009
    Publication date: January 21, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Ramprakash Sankarakrishnan, Dale DuBois, Ganesh Balasubramanian, Karthik Janakiraman, Juan Carlos Rocha-Alvarez, Thomas Nowak, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Publication number: 20090314309
    Abstract: A method and apparatus for cleaning a process chamber are provided. In one embodiment, a process chamber is provided that includes a remote plasma source and a process chamber having at least two processing regions. Each processing region includes a substrate support assembly disposed in the processing region, a gas distribution system configured to provide gas into the processing region above the substrate support assembly, and a gas passage configured to provide gas into the processing region below the substrate support assembly. A first gas conduit is configured to flow a cleaning agent from the remote plasma source through the gas distribution assembly in each processing region while a second gas conduit is configured to divert a portion of the cleaning agent from the first gas conduit to the gas passage of each processing region.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 24, 2009
    Inventors: Ramprakash Sankarakrishnan, Dale DuBois, Ganesh Balasubramanian, Karthik Janakiraman, Juan Carlos Rocha-Alvarez, Thomas Nowak, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Publication number: 20090236214
    Abstract: An apparatus and method are provided for controlling the intensity and distribution of a plasma discharge in a plasma chamber. In one embodiment, a shaped electrode is embedded in a substrate support to provide an electric field with radial and axial components inside the chamber. In another embodiment, the face plate electrode of the showerhead assembly is divided into zones by isolators, enabling different voltages to be applied to the different zones. Additionally, one or more electrodes may be embedded in the chamber side walls.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 24, 2009
    Inventors: Karthik Janakiraman, Thomas Nowak, Juan Carlos Rocha-Alvarez, Mark A. Fodor, Dale R. Du Bois, Amit Bansal, Mohamad Ayoub, Eller Y. Juco, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Patent number: 7582167
    Abstract: In one embodiment, the invention is a guard ring for reducing particle entrapment along a moveable shaft of a substrate support. In one embodiment, the guard ring comprises a substantially annular guard ring positioned within a step formed in a sleeve that circumscribes the shaft. The guard ring is positioned to substantially seal a gap separating the shaft from the sleeve, so that the amount of particles and foreign matter that travel within or become trapped in the gap is substantially reduced. In another embodiment, a guard ring comprises a base portion having an inner perimeter and an outer perimeter, a first flange coupled to the inner perimeter, a second flange coupled to the outer perimeter, and a continuous channel separating the first flange from the second flange. The first flange is adapted to function as a spring that accommodates displacement of the shaft.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: September 1, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Andrzej Kaszuba, Sophia M. Velastegui, Visweswaren Sivaramakrishnan, Pyongwon Yim, Mario David Silvetti, Tom K. Cho, Indrajit Lahiri, Surinder S. Bedi
  • Publication number: 20090093128
    Abstract: Methods for high temperature deposition an amorphous carbon film with improved step coverage are provided. In one embodiment, a method for of depositing an amorphous carbon film includes providing a substrate in a process chamber, heating the substrate at a temperature greater than 500 degrees Celsius, supplying a gas mixture comprising a hydrocarbon compound and an inert gas into the process chamber containing the heated substrate, and depositing an amorphous carbon film on the heated substrate having a stress of between 100 mega-pascal (MPa) tensile and about 100 mega-pascal (MPa) compressive.
    Type: Application
    Filed: October 8, 2007
    Publication date: April 9, 2009
    Inventors: MARTIN JAY SEAMONS, Yoganand N. Saripalli, Kwangduk Douglas Lee, Bok Hoen Kim, Visweswaren Sivaramakrishnan, Wendy H. Yeh, Josephine Ju-Hwei Chang Liu, Amir Al-Bayati, Derek R. Witty, Hichem M'Saad
  • Patent number: 7514125
    Abstract: Methods of making an article having a protective coating for use in semiconductor applications are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Publication number: 20090044753
    Abstract: An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Application
    Filed: October 21, 2008
    Publication date: February 19, 2009
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad