Patents by Inventor Vivek A. Sujan

Vivek A. Sujan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7650224
    Abstract: An apparatus, system, and method are disclosed for reducing nitrogen oxide emissions in a combustion engine. The method includes a shift detection module determining an out of gear (OOG) indicator for a manual transmission. The method further includes an engine speed module determining an engine speed target based on at least one operating condition of the engine. The method continues with a load determination module determining an engine load target in response to the OOG indicator and an engine acceleration module determining a desired net torque based on the engine speed target and the engine load target. Finally, the method concludes with an emissions module determining a minimum fuel target based on the desired net torque and an actuation module generating a fueling signal to engage an engine fueling.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: January 19, 2010
    Assignee: Cummins, Inc
    Inventors: Morgan Andrea, Adrian Dale, Jeffrey A. Matthew, Vivek A. Sujan
  • Publication number: 20090314082
    Abstract: According to one exemplary embodiment, a virtual turbine speed sensor for a multi-stage turbocharger system of an internal combustion engine is disclosed. The multi-stage turbocharger system includes at least two sequential turbochargers each having a compressor and a turbine. The virtual turbine speed sensor includes a compressor efficiency module, an inter-stage air temperature module, and a turbine speed module. The compressor efficiency module is configured to estimate an efficiency of a compressor of a first of the at least two turbochargers. The inter-stage air temperature module is configured to estimate an inter-stage temperature of air between the at least two compressors. The inter-stage temperature estimate is based at least partially on the efficiency of the compressor of the first turbocharger. The turbine speed module is configured to estimate a speed of a turbine of a second of the at least two turbochargers.
    Type: Application
    Filed: June 23, 2008
    Publication date: December 24, 2009
    Inventors: Vivek A. Sujan, Adrian P. Dale, Jeffrey Matthews, Kent Krajewski, David Stroh, Ryo Fuchinoue
  • Publication number: 20090293453
    Abstract: Various embodiments of an apparatus, system, and method are disclosed for controlling engine exhaust temperature. For example, according to one exemplary embodiment, an apparatus for controlling the temperature of engine output exhaust of an internal combustion engine during a regeneration event on a particulate matter filter includes a regeneration module and an exhaust temperature manager. The regeneration module is configured to determine a desired diesel oxidation catalyst (DOC) inlet exhaust temperature during a regeneration event. The exhaust temperature manager is configured to determine an air-to-fuel ratio strategy for achieving a desired air-to-fuel ratio within the combustion chamber for producing an engine output exhaust temperature approximately equal to the desired DOC inlet exhaust temperature. The air-to-fuel ratio strategy includes a first mode and a second mode. The first mode includes varying the position of an air intake throttle valve while maintaining a VGT device in a fixed position.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Inventor: Vivek A. Sujan
  • Publication number: 20090250042
    Abstract: A system and method are provided for controlling a flow of intake air entering an internal combustion engine. At least some of the intake air is diverted away from the engine in response to detection of a first operating condition that is indicative of a minimum engine fueling rate. A second operating condition that is indicative of a flow rate of the intake air entering the engine is monitored, and diverting at least some of the intake air away from the engine is discontinued if the second operating condition indicates that the flow rate of the intake air entering the engine is within a threshold value of a target flow rate.
    Type: Application
    Filed: April 8, 2008
    Publication date: October 8, 2009
    Inventors: Vivek A. Sujan, Morgan Andreae, Adrian P. Dale, Jeffrey A. Matthews
  • Publication number: 20090250043
    Abstract: A system and method are provided for controlling recirculation of exhaust gas to an internal combustion engine having an exhaust gas recirculation (EGR) system comprising an EGR conduit coupled between an exhaust manifold and an intake manifold of the engine. Exhaust gas produced by the engine is trapped within the EGR system in response to detection of a first operating condition that is indicative of a minimum engine fueling rate. The trapped exhaust gas is released from the EGR system into the intake manifold of the engine in response to detection of a second operating condition that is indicative of a subsequent increase in engine fueling rate above the minimum engine fueling rate.
    Type: Application
    Filed: April 8, 2008
    Publication date: October 8, 2009
    Inventors: Vivek A. Sujan, Morgan Andreae, Adrian P. Dale, Jeffrey A. Matthews
  • Publication number: 20090224190
    Abstract: An apparatus, system, and method are disclosed for optimizing a valve orifice shape. According to one representative embodiment, a method includes determining a specified relationship between a valve position and an output characteristic, and determining an orifice profile. The method also includes determining a relationship of an orifice area to the output characteristic. Further, the method includes shaping an orifice in a valve based on the orifice profile and the specified relationship between the valve position and the output characteristic. According to the method, the valve should approximately exhibit the specified relationship.
    Type: Application
    Filed: March 8, 2008
    Publication date: September 10, 2009
    Inventors: Adrian P. Dale, Vivek A. Sujan
  • Publication number: 20090222190
    Abstract: A method is disclosed for preventing an underspeed event of a turbocharger. The method includes interpreting a turbocharger speed, a compressor differential pressure (CDP) and a turbocharger differential pressure (TDP). The method further includes calculating a thrust load capacity (TLC) based on the turbocharger speed, and calculating a current thrust load (CTL) based on the CDP and the TDP. The method further includes calculating a thrust margin based on the TLC and the CTL, and controlling an actuator in response to the thrust margin. Controlling the actuator includes maintaining the thrust margin to a thrust margin target, which may be a function of the turbocharger speed. The actuator is a turbine bypass valve, a compressor bypass valve, a variable geometry turbocharger position, an exhaust throttle and/or an exhaust gas recirculation valve that controls the turbocharger speed.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Inventors: Morgan Andreae, Kirtan Bhandary, Adrian Dale, Jeffrey A. Matthews, Vivek A. Sujan
  • Publication number: 20090211229
    Abstract: An apparatus, system, and method are disclosed for reducing nitrogen oxide emissions in a combustion engine. The method includes a shift detection module determining an out of gear (OOG) indicator for a manual transmission. The method further includes an engine speed module determining an engine speed target based on at least one operating condition of the engine. The method continues with a load determination module determining an engine load target in response to the OOG indicator and an engine acceleration module determining a desired net torque based on the engine speed target and the engine load target. Finally, the method concludes with an emissions module determining a minimum fuel target based on the desired net torque and an actuation module generating a fueling signal to engage an engine fueling.
    Type: Application
    Filed: February 25, 2008
    Publication date: August 27, 2009
    Inventors: Morgan Andreae, Adrian Dale, Jeffrey A. Matthews, Vivek A. Sujan
  • Publication number: 20090211248
    Abstract: An apparatus, system, and method are disclosed for predictive control of a turbocharger. The method includes interpreting a compressor performance model for a turbocharger, and interpreting at least one current operating parameter. The method further includes calculating a performance margin, calculating a performance margin derivative, and calculating a response value. The performance margin comprises a choke margin or a surge margin according to the position of an operating point in the compressor performance model. The performance margin is implemented in a first sigmoid function, and the performance margin derivative is implemented in a second sigmoid function. The response value is determined by applying a MIN function to the output of the product of the sigmoid functions in the choke margin case, and by applying a MAX function to the product of the sigmoid functions in the surge margin case.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Inventors: Morgan Andreae, Adrian P. Dale, Jeffrey Matthews, William A. Rankin, Vivek A. Sujan
  • Publication number: 20090188251
    Abstract: An apparatus, system, and method are disclosed for a single-actuated multi-function valve. The apparatus includes a primary fluid conduit, a secondary fluid conduit, and a valve. The primary fluid conduit flows from an exhaust manifold to an outlet through a high pressure turbocharger and a low pressure turbocharger. The secondary fluid conduit flows from the exhaust manifold to an outlet through the low pressure turbocharger. The valve has two flow passages—the first flow passage is a variable restriction within the primary fluid conduit, and the second flow passage is a variable restriction within the secondary fluid conduit. Turning the valve one direction from a nominal position controls the flow ratios in the primary and secondary fluid conduits, while turning the valve in the other direction from the nominal position controls exhaust braking.
    Type: Application
    Filed: January 24, 2008
    Publication date: July 30, 2009
    Inventors: Adrian P. Dale, Vivek A. Sujan
  • Publication number: 20090082936
    Abstract: An apparatus, system, and method are disclosed for preventing turbocharger overspeed in a combustion engine. The method includes determining a turbocharger error term as a difference between a nominal turbocharger maximum speed and a current turbocharger speed. The method further includes determining a turbocharger speed derivative with respect to time. The method includes calculating a turbocharger control response based on the turbocharger error term and the turbocharger speed derivative with respect to time. The turbocharger control response may be a modified turbocharger maximum speed calculated by determining a reference speed multiplier based on the turbocharger error term and the turbocharger speed derivative with respect to time, and multiplying the reference speed multiplier by the nominal turbocharger maximum speed. The method thereby smoothly anticipates turbocharger transient events, and prevents an overspeed condition of the turbocharger.
    Type: Application
    Filed: September 20, 2007
    Publication date: March 26, 2009
    Inventors: Morgan Andreae, Adrian Dale, Jeffrey A. Matthews, Bill Rankin, Vivek A. Sujan
  • Publication number: 20080163855
    Abstract: One embodiment is a unique system for controlling EGR. Other embodiments include unique apparatuses, systems, devices, hardware, software, methods, and combinations of these and other techniques for controlling EGR.
    Type: Application
    Filed: December 17, 2007
    Publication date: July 10, 2008
    Inventors: Jeff Matthews, Ward Edwards, Vivek Sujan, Adrian Dale, Sam Geckler