Patents by Inventor Vivek Agrawal

Vivek Agrawal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10546973
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: January 28, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Patent number: 10535121
    Abstract: A digital medium environment is described to improve creation and rasterization of a shape through pixel alignment. In one example, a pixel alignment system is implemented at least partially in hardware of a computing device. The pixel alignment system receives an input that specifies a geometry, a stroke setting, and a location that serves as a basis to position the shape. The pixel alignment system then snaps the location as specified by the at least one input to a snapped location based on a pixel grid. The snapped location based on the geometry, the stroke setting, and the location as specified by the input. A rasterization module is then employed to rasterize the shape as pixels based on the snapped location.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: January 14, 2020
    Assignee: Adobe Inc.
    Inventors: Vivek Agrawal, Abhishek Singh
  • Publication number: 20190369737
    Abstract: Techniques are disclosed for generating a reference point on a path of a vector image using a preview reference point. In some examples, a method includes receiving selection of a path included in one or more paths of a vector image presented on a display, thereby identifying an active path; causing display, via the display, of a preview reference point on the active path; receiving a moving off-path input gesture and causing the preview reference point to move along the active path correspondingly with the moving off-path input gesture; and in response to the moving off-path input gesture terminating, set a current position of the preview reference point on the active path to a final reference point on the path, the current position of the preview reference point on the active path corresponding to a last position of the off-path input gesture. The display may be a touch-sensitive display.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 5, 2019
    Applicant: Adobe Inc.
    Inventors: Vivek Agrawal, Prashant Kumar Singh
  • Publication number: 20190310766
    Abstract: Systems and techniques for identifying and creating individual assets from a canvas containing an artwork include receiving a canvas containing an artwork. An organization of the artwork on the canvas is determined. Individual assets in the artwork on the canvas are identified by applying a segmentation rule based on the organization of the artwork. The individual assets are created.
    Type: Application
    Filed: April 9, 2018
    Publication date: October 10, 2019
    Inventors: Vivek Agrawal, Tarun Gehlaut, Prateek Soni, Prashant Kumar Singh, Ankit Aggarwal
  • Patent number: 10380722
    Abstract: Various embodiments describe correcting blurriness of a graphic object rendered on a display. In an example, a computer system generates the graphic object in a vector format and in a raster format. The graphic object has a shaped defined by internal and external lines. The computer system detects the blurriness of an internal line and determines an offset by which the internal line should be translated to eliminated the blurriness. The graphic object is translated on the pixel grid of the raster format by the offset. The computer system also detects the blurriness of an external line and determines an offset by which the external line should be scaled to eliminate the blurriness. The external line scaled by this offset while keeping the center of the graphic shape in its position.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: August 13, 2019
    Assignee: Adobe Inc.
    Inventor: Vivek Agrawal
  • Patent number: 10380721
    Abstract: This disclosure covers systems and methods that sharpen the appearance of a digital illustration while moving the digital illustration. In certain embodiments, upon receiving a command to move a digital illustration, the disclosed systems and methods move the digital illustration (and its constituent line segments) to positions that both sharpen the appearance of the digital illustration and respond to the command. To facilitate sharpening the appearance of a digital illustration as part of a seemingly continuous movement, in some embodiments, the disclosed systems and methods move a blurry digital illustration to a position that sharpens the appearance of blurry axial-line segments by translating the digital illustration according to a translation vector and a command to move the digital illustration.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: August 13, 2019
    Assignee: ADOBE INC.
    Inventors: Vivek Agrawal, Prashant Kumar Singh, Ankit Aggarwal
  • Publication number: 20190172973
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Application
    Filed: February 1, 2019
    Publication date: June 6, 2019
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Publication number: 20190130537
    Abstract: Various embodiments describe correcting blurriness of a graphic object rendered on a display. In an example, a computer system generates the graphic object in a vector format and in a raster format. The graphic object has a shaped defined by internal and external lines. The computer system detects the blurriness of an internal line and determines an offset by which the internal line should be translated to eliminated the blurriness. The graphic object is translated on the pixel grid of the raster format by the offset. The computer system also detects the blurriness of an external line and determines an offset by which the external line should be scaled to eliminate the blurriness. The external line scaled by this offset while keeping the center of the graphic shape in its position.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventor: Vivek Agrawal
  • Patent number: 10236412
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: March 19, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Patent number: 10210013
    Abstract: The disclosed computer-implemented method for making snapshots available may include (i) identifying a writeback log that records input/output operations of a compute node within a high-availability environment, (ii) placing, in the writeback log, a marker that indicates a start of a snapshot to be stored on a data node, (iii) marking, after placing the marker and before all data within the snapshot has been transferred to the data node, the snapshot as available, (iv) receiving, from an additional compute node, a request to read from the snapshot, and (v) sending, from the compute node to the additional compute node, metadata indicating which portion of data from the snapshot is stored on the data node and which portion of the data from the snapshot is not stored on the data node but is stored in the writeback log. Various other methods, systems, and computer-readable media are also disclosed.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: February 19, 2019
    Assignee: Veritas Technologies LLC
    Inventors: Suhas Dantkale, Rakesh Ranjan, Vivek Agrawal
  • Patent number: 10193014
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: January 29, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Publication number: 20180315169
    Abstract: This disclosure covers systems and methods that sharpen the appearance of a digital illustration while moving the digital illustration. In certain embodiments, upon receiving a command to move a digital illustration, the disclosed systems and methods move the digital illustration (and its constituent line segments) to positions that both sharpen the appearance of the digital illustration and respond to the command. To facilitate sharpening the appearance of a digital illustration as part of a seemingly continuous movement, in some embodiments, the disclosed systems and methods move a blurry digital illustration to a position that sharpens the appearance of blurry axial-line segments by translating the digital illustration according to a translation vector and a command to move the digital illustration.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 1, 2018
    Inventors: Vivek Agrawal, Prashant Kumar Singh, Ankit Aggarwal
  • Patent number: 10109481
    Abstract: Embodiments of the invention described herein generally relate to an apparatus and methods for forming high quality buffer layers and Group III-V layers that are used to form a useful semiconductor device, such as a power device, light emitting diode (LED), laser diode (LD) or other useful device. Embodiments of the invention may also include an apparatus and methods for forming high quality buffer layers, Group III-V layers and electrode layers that are used to form a useful semiconductor device. In some embodiments, an apparatus and method includes the use of one or more cluster tools having one or more physical vapor deposition (PVD) chambers that are adapted to deposit a high quality aluminum nitride (AlN) buffer layer that has a high crystalline orientation on a surface of a plurality of substrates at the same time.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: October 23, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Vivek Agrawal, Anantha Subramani, Daniel Lee Diehl, Xianmin Tang
  • Publication number: 20180261720
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Application
    Filed: May 15, 2018
    Publication date: September 13, 2018
    Inventors: Mingwei ZHU, Nag B. PATIBANDLA, Rongjun WANG, Daniel Lee DIEHL, Vivek AGRAWAL, Anantha Subramani
  • Publication number: 20180122050
    Abstract: A digital medium environment is described to improve creation and rasterization of a shape through pixel alignment. In one example, a pixel alignment system is implemented at least partially in hardware of a computing device. The pixel alignment system receives an input that specifies a geometry, a stroke setting, and a location that serves as a basis to position the shape. The pixel alignment system then snaps the location as specified by the at least one input to a snapped location based on a pixel grid. The snapped location based on the geometry, the stroke setting, and the location as specified by the input. A rasterization module is then employed to rasterize the shape as pixels based on the snapped location.
    Type: Application
    Filed: October 31, 2016
    Publication date: May 3, 2018
    Applicant: Adobe Systems Incorporated
    Inventors: Abhishek Singh, Vivek Agrawal
  • Patent number: 9929310
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: March 27, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Nag B. Patibandia, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Publication number: 20170053543
    Abstract: A video system that provides feedback, coaching, assessment, and training to surgeons integrating objective skills assessment tools to a video or live feed of the surgical procedure.
    Type: Application
    Filed: August 22, 2016
    Publication date: February 23, 2017
    Applicant: Surgus, Inc.
    Inventors: Vivek Agrawal, Jean-Sebastien Legare, Daniel J. Naab, Renzo Maicol Olguin
  • Publication number: 20160293798
    Abstract: Fabrication of gallium nitride-based light devices with physical vapor deposition (PVD)-formed aluminum nitride buffer layers is described. Process conditions for a PVD AlN buffer layer are also described. Substrate pretreatments for a PVD aluminum nitride buffer layer are also described. In an example, a method of fabricating a buffer layer above a substrate involves pre-treating a surface of a substrate. The method also involves, subsequently, reactive sputtering an aluminum nitride (AlN) layer on the surface of the substrate from an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-based gas or plasma.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 6, 2016
    Inventors: Mingwei Zhu, Rongjun Wang, Nag B. Patibandla, Xianmin Tang, Vivek Agrawal, Cheng-Hsiung Tsai, Muhammad Rasheed, Dinesh Saigal, Praburam Gopal Raja, Omkaram Nalamasu, Anantha Subramani
  • Patent number: 9396933
    Abstract: Fabrication of gallium nitride-based light devices with physical vapor deposition (PVD)-formed aluminum nitride buffer layers is described. Process conditions for a PVD AlN buffer layer are also described. Substrate pretreatments for a PVD aluminum nitride buffer layer are also described. In an example, a method of fabricating a buffer layer above a substrate involves pre-treating a surface of a substrate. The method also involves, subsequently, reactive sputtering an aluminum nitride (AlN) layer on the surface of the substrate from an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-based gas or plasma.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: July 19, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Rongjun Wang, Nag B. Patibandia, Xianmin Tang, Vivek Agrawal, Cheng-Hsiung Tsai, Muhammad Rasheed, Dinesh Saigal, Praburam Gopal Raja, Omkaram Nalamasu, Anantha Subramani
  • Patent number: D769930
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: October 25, 2016
    Assignee: ALIPHCOM
    Inventor: Vivek Agrawal