Patents by Inventor Vivekananda P. Adiga

Vivekananda P. Adiga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210217947
    Abstract: A method for fabricating a bridge structure in a quantum mechanical device includes providing a substructure including a substrate having deposited thereon a layer of a first superconducting material divided into a first portion, a second portion and a third portion that are electrically insulated from each other; depositing a sacrificial layer on the substructure; electrically connecting the first portion and the second portion with a strip of a second superconducting material, the second superconducting material being different from the first superconducting material; and removing a portion of the sacrificial layer so as to form a bridge structure over the third portion between the first portion and the second portion, the bridge structure electrically connecting the first portion to the second portion while not electrically connecting the third portion to the first portion and not electrically connecting the third portion to the second portion.
    Type: Application
    Filed: January 13, 2020
    Publication date: July 15, 2021
    Inventors: Vivekananda P. Adiga, Hongwen Yan, JOHN M. PAPALIA, David L. Rath, Jyotica Patel
  • Publication number: 20210183793
    Abstract: According to an embodiment of the present invention, a quantum processor includes a qubit chip. The qubit chip includes a substrate, and a plurality of qubits formed on a first surface of the substrate. The plurality of qubits are arranged in a pattern, wherein nearest-neighbor qubits in the pattern are connected. The quantum processor also includes a long-range connector configured to connect a first qubit of the plurality of qubits to a second qubit of the plurality of qubits, wherein the first and second qubits are separated by at least a third qubit in the pattern.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 17, 2021
    Inventors: Dongbing Shao, Markus Brink, Martin O. Sandberg, Vivekananda P. Adiga
  • Publication number: 20210175026
    Abstract: Devices, systems, methods, computer-implemented methods, apparatus, and/or computer program products that can facilitate a switch device that shifts frequency of a resonator in a quantum device are provided. According to an embodiment, a device can comprise a readout resonator coupled to a qubit. The device can further comprise a switch device formed across the readout resonator that shifts frequency of the readout resonator based on position of the switch device. According to another embodiment, a device can comprise a bus resonator coupled to a plurality of qubits. The device can further comprise a switch device formed across the bus resonator that shifts frequency of the bus resonator based on position of the switch device.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 10, 2021
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Firat Solgun, Jerry M. Chow
  • Publication number: 20210151660
    Abstract: A method of making a Josephson junction for a superconducting qubit includes providing a substructure having a surface with first and second trenches perpendicular to each other defined therein. The method further includes evaporating a first superconducting material to deposit the first superconducting material and evaporating a second superconducting material to deposit the second superconducting material in the first trench to provide a first lead, and forming an oxidized layer on the first and second superconducting materials. The method includes evaporating a third superconducting material at an angle substantially perpendicular to the surface of the substructure to deposit the third superconducting material in the second trench without rotating the substructure to form a second lead. A vertical Josephson junction is formed at the intersection of the first and second trenches electrically connected through the first lead and through the second lead.
    Type: Application
    Filed: November 14, 2019
    Publication date: May 20, 2021
    Inventors: Vivekananda P. Adiga, Benjamin B. Wymore, Keith Fogel, Martin O. Sandberg
  • Publication number: 20210148947
    Abstract: Systems, devices, computer-implemented methods, and computer program products to facilitate contactless screening of a qubit are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a scanner component that establishes a direct microwave coupling of a scanning probe device to a qubit of a quantum device. The computer executable components can further comprise a parameter extraction component that determines qubit frequency of the qubit based on the direct microwave coupling.
    Type: Application
    Filed: December 29, 2020
    Publication date: May 20, 2021
    Inventors: Martin O. Sandberg, Vivekananda P. Adiga, Hanhee Paik, Jared Barney Hertzberg
  • Publication number: 20210143314
    Abstract: Techniques regarding encapsulating one or more superconducting devices of a quantum processor are provided. For example, one or more embodiments described herein can regard a method that can comprise depositing a metal fluoride layer onto a superconducting resonator and a silicon substrate that can be comprised within a quantum processor. The superconducting resonator can be positioned on the silicon substrate. Also, the metal fluoride layer can coat the superconducting resonator.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: Richard Alan Haight, Vivekananda P. Adiga, Martin O. Sandberg, Hanhee Paik
  • Publication number: 20210143309
    Abstract: Techniques regarding encapsulating one or more superconducting devices of a quantum processor are provided. For example, one or more embodiments described herein can regard a method that can comprise depositing an adhesion layer onto a superconducting resonator and a silicon substrate that are comprised within a quantum processor. The superconducting resonator can be positioned on the silicon substrate. Also, the adhesion layer can comprise a chemical compound having a thiol functional group.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: Richard Alan Haight, Ali Afzali-Ardakani, Vivekananda P. Adiga, Martin O. Sandberg, Hanhee Paik
  • Patent number: 11004896
    Abstract: According to an embodiment of the present invention, a system for non-invasively characterizing a qubit device includes a characterization probe chip. The characterization probe chip includes a substrate and a characterization resonator formed on a first surface of the substrate. The characterization resonator includes a superconducting stripline, and a superconducting antenna coupled to an end of the superconducting stripline, the superconducting antenna positioned to align with a qubit on the qubit device being characterized. The characterization probe chip also includes and a superconducting ground plane formed on a second surface of the substrate, the second surface opposing the first surface. In operation, the superconducting antenna is configured to capacitively couple the characterization resonator to the qubit aligned with the superconducting antenna for characterization of the qubit.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: May 11, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Hanhee Paik, Jerry M. Chow
  • Publication number: 20210134880
    Abstract: According to an embodiment of the present invention, a system for non-invasively characterizing a qubit device includes a characterization probe chip. The characterization probe chip includes a substrate and a characterization resonator formed on a first surface of the substrate. The characterization resonator includes a superconducting stripline, and a superconducting antenna coupled to an end of the superconducting stripline, the superconducting antenna positioned to align with a qubit on the qubit device being characterized. The characterization probe chip also includes and a superconducting ground plane formed on a second surface of the substrate, the second surface opposing the first surface. In operation, the superconducting antenna is configured to capacitively couple the characterization resonator to the qubit aligned with the superconducting antenna for characterization of the qubit.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 6, 2021
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Hanhee Paik, Jerry M. Chow
  • Publication number: 20210119104
    Abstract: Techniques for forming quantum circuits, including connections between components of quantum circuits, are presented. A trench can be formed in a dielectric material, by removing a portion of the dielectric material and a portion of conductive material layered on top of the dielectric material, to enable creation of circuit components of a circuit. The trench can define a regular nub or compensated nub to facilitate creating electrical leads connected to the circuit components on a nub. The compensated nub can comprise recessed regions to facilitate depositing material during evaporation to form the leads. For compensated nub implementation, material can be evaporated in two directions, with oxidation performed in between such evaporations, to contact leads and form a Josephson junction. For regular nub implementation, material can be evaporated in four directions, with oxidation performed in between the third and fourth evaporations, to contact leads and form a Josephson junction.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Jerry M. Chow
  • Patent number: 10957737
    Abstract: Symmetrical qubits with reduced far-field radiation are provided. In one example, a qubit device includes a first group of superconducting capacitor pads positioned about a defined location of the qubit device, wherein the first group of superconducting capacitor pads comprise two or more superconducting capacitor pads having a first polarity, and a second group of superconducting capacitor pads positioned about the defined location of the qubit device in an alternating arrangement with the first group of superconducting capacitor pads, wherein the second group of superconducting capacitor pads comprise two or more superconducting capacitor pads having a second polarity that is opposite the first polarity.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Jerry M. Chow, Hanhee Paik
  • Patent number: 10930987
    Abstract: The present invention provides a process and structure of microfabricated air bridges for planar microwave resonator circuits. In an embodiment, the invention includes depositing a superconducting film on a surface of a base material, where the superconducting film is formed with a compressive stress, where the compressive stress is higher than a critical buckling stress of a defined structure, etching an exposed area of the superconducting film, thereby creating the at least one bridge, etching the base material, thereby forming a gap between the at least one bridge and the base material, depositing the at least one metal line on at least part of the superconducting film and at least part of the base material, where the at least one metal line runs under the bridge.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: February 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Vivekananda P. Adiga, Markus Brink
  • Patent number: 10916690
    Abstract: Techniques for forming quantum circuits, including connections between components of quantum circuits, are presented. A trench can be formed in a dielectric material, by removing a portion of the dielectric material and a portion of conductive material layered on top of the dielectric material, to enable creation of circuit components of a circuit. The trench can define a regular nub or compensated nub to facilitate creating electrical leads connected to the circuit components on a nub. The compensated nub can comprise recessed regions to facilitate depositing material during evaporation to form the leads. For compensated nub implementation, material can be evaporated in two directions, with oxidation performed in between such evaporations, to contact leads and form a Josephson junction. For regular nub implementation, material can be evaporated in four directions, with oxidation performed in between the third and fourth evaporations, to contact leads and form a Josephson junction.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: February 9, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Jerry M. Chow
  • Patent number: 10900998
    Abstract: Systems, devices, computer-implemented methods, and computer program products to facilitate contactless screening of a qubit are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a scanner component that establishes a direct microwave coupling of a scanning probe device to a qubit of a quantum device. The computer executable components can further comprise a parameter extraction component that determines qubit frequency of the qubit based on the direct microwave coupling.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: January 26, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Martin O. Sandberg, Vivekananda P. Adiga, Hanhee Paik, Jared Barney Hertzberg
  • Patent number: 10840295
    Abstract: A fluxonium qubit includes a superinductor. The superinductor includes a substrate, and a first vertical stack extending in a vertical direction from a surface of the substrate. The first vertical stack includes a first Josephson junction and a second Josephson junction connected in series along the vertical direction. The superinductor includes a second vertical stack extending in a vertical direction from a surface of the substrate. The second vertical stack includes a third Josephson junction. The superinductor includes a superconducting connector connecting the first and second vertical stacks in series such that the first, second, and third Josephson junctions are connected in series. The fluxonium qubit further includes a shunted Josephson junction connected to the superinductor with superconducting wires such that the first, second, and third Josephson junctions of the superinductor that are in series are connected in parallel with the shunted Josephson junction.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: November 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Martin O. Sandberg, Vivekananda P. Adiga, Rasit O. Topaloglu
  • Publication number: 20200343434
    Abstract: On a first superconducting layer deposited on a first surface of a substrate, a first component of a resonator is pattered. On a second superconducting layer deposited on a second surface of the substrate, a second component of the resonator is patterned. The first surface and the second surface are disposed relative to each other in a non-co-planar disposition. In the substrate, a recess is created, the recess extending from the first superconducting layer to the second superconducting layer. On an inner surface of the recess, a third superconducting layer is deposited, the third superconducting layer forming a superconducting path between the first superconducting layer and the second superconducting layer. Excess material of the third superconducting layer is removed from the first surface and the second surface, forming a completed through-silicon via (TSV).
    Type: Application
    Filed: April 29, 2019
    Publication date: October 29, 2020
    Applicant: International Business Machines Corporation
    Inventors: Joshua M. Rubin, Jared Barney Hertzberg, Sami Rosenblatt, Vivekananda P. Adiga, Markus Brink, Arvind Kumar
  • Publication number: 20200335549
    Abstract: A fluxonium qubit includes a superinductor. The superinductor includes a substrate, and a first vertical stack extending in a vertical direction from a surface of the substrate. The first vertical stack includes a first Josephson junction and a second Josephson junction connected in series along the vertical direction. The superinductor includes a second vertical stack extending in a vertical direction from a surface of the substrate. The second vertical stack includes a third Josephson junction. The superinductor includes a superconducting connector connecting the first and second vertical stacks in series such that the first, second, and third Josephson junctions are connected in series. The fluxonium qubit further includes a shunted Josephson junction connected to the superinductor with superconducting wires such that the first, second, and third Josephson junctions of the superinductor that are in series are connected in parallel with the shunted Josephson junction.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 22, 2020
    Inventors: Martin O. Sandberg, Vivekananda P. Adiga, Rasit O. Topaloglu
  • Patent number: 10810505
    Abstract: A product causes a method to be performed, the method includes depositing a first layer on a portion of a first surface of a quantum hardware, the portion of the first surface comprising a set of wirebonds. The method further includes coupling the set of wirebonds to the first layer. The method further includes removing the first layer and the set of wirebonds from the first surface of the quantum hardware. In an embodiment, the first layer is an inert polymer in solution.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: October 20, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Martin O. Sandberg, Vivekananda P. Adiga, Robert Connelly
  • Publication number: 20200328338
    Abstract: A qubit includes a substrate, and a first capacitor structure having a lower portion formed on a surface of the substrate and at least one first raised portion extending above the surface of the substrate. The qubit further includes a second capacitor structure having a lower portion formed on the surface of the substrate and at least one second raised portion extending above the surface of the substrate. The first capacitor structure and the second capacitor structure are formed of a superconducting material. The qubit further includes a junction between the first capacitor structure and the second capacitor structure. The junction is disposed at a predetermined distance from the surface of the substrate and has a first end in contact with the first raised portion and a second end in contact with the second raised portion.
    Type: Application
    Filed: April 11, 2019
    Publication date: October 15, 2020
    Applicant: International Business Machines Corporation
    Inventors: Vivekananda P. Adiga, Martin O. Sandberg, Jerry M. Chow, Hanhee Paik
  • Publication number: 20200233996
    Abstract: A system includes a memory that stores computer executable components, and a processor executes the computer executable components stored in the memory. The computer executable components comprise: an assessment component that determines locations for mode suppression structures on a coplanar waveguide of a quantum chip having qubits; a simulation component that simulates performance of the quantum chip based on a subset of the locations for the mode suppression structures and parameters of the quantum chip, and generates a mode suppression structures placement model. A template component generates a template of specific coordinates for placement of a subset of the mode suppression structures on the quantum chip based on the mode suppression structures placement model; and a driver component employs the template to drive an auto-bonder to install the subset of the mode suppression structures on the quantum chip at the specific coordinates.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 23, 2020
    Inventors: Salvatore Bernardo Olivadese, Vivekananda P. Adiga, Jared Barney Hertzberg