Patents by Inventor Vladimir Kamenov

Vladimir Kamenov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8486590
    Abstract: To improve the mask of an EUV lithography apparatus in view of its high reflectivity, a reflective mask is suggested for EUV lithography having a reflective multilayer system on a substrate configured for a working wavelength in the EUV range and having stacks with layers of at least two materials with different real parts of the refractive index at the working wavelength, wherein the multilayer system (V) is configured such that, as it is irradiated with EUV radiation at a fixed wavelength and an angle interval between the smallest and the largest angle of incidence of up to 21°, the apodization is less than 30%.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: July 16, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Vladimir Kamenov, Sascha Migura
  • Patent number: 8446665
    Abstract: Catadioptric projection objective (1) for microlithography for imaging an object field (3) in an object plane (5) onto an image field (7) in an image plane (9). The objective includes a first partial objective (11) imaging the object field onto a first real intermediate image (13), a second partial objective (15) imaging the first intermediate image onto a second real intermediate image (17), and a third partial objective (19) imaging the second intermediate image onto the image field. The second partial objective is a catadioptric objective having exactly one concave mirror and having at least one lens (L21, L22). A first folding mirror (23) deflects the radiation from the object plane toward the concave mirror and a second folding mirror (25) deflects the radiation from the concave mirror toward the image plane. At least one surface of a lens (L21, L22) of the second partial objective has an antireflection coating having a reflectivity of less than 0.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 21, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Vladimir Kamenov, Toralf Gruner, Thomas Schicketanz
  • Patent number: 8339576
    Abstract: A projection lens of a projection exposure apparatus, for imaging a mask which can be positioned in an object plane onto a light-sensitive layer which can be positioned in an image plane, includes a housing, in which at least one optical element is arranged, at least one partial housing which is arranged within said housing and which at least regionally surrounds light passing from the object plane as far as the image plane during the operation of the projection lens, and a reflective structure, which reduces a light proportion which reaches the image plane after reflection at the at least one partial housing, by comparison with an analogous arrangement without said reflective structure.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: December 25, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ulrich Loering, Vladimir Kamenov, Dirk Heinrich Ehm, Stefan-Wolfgang Schmidt, Moritz Becker, Andreas Wurmbrand
  • Publication number: 20120320348
    Abstract: To improve the mask of an EUV lithography apparatus in view of its high reflectivity, a reflective mask is suggested for EUV lithography having a reflective multilayer system on a substrate configured for a working wavelength in the EUV range and having stacks with layers of at least two materials with different real parts of the refractive index at the working wavelength, wherein the multilayer system (V) is configured such that, as it is irradiated with EUV radiation at a fixed wavelength and an angle interval between the smallest and the largest angle of incidence of up to 21°, the apodization is less than 30%.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Vladimir KAMENOV, Sascha MIGURA
  • Publication number: 20120281196
    Abstract: A projection lens of a projection exposure apparatus, for imaging a mask which can be positioned in an object plane onto a light-sensitive layer which can be positioned in an image plane, includes a housing, in which at least one optical element is arranged, at least one partial housing which is arranged within said housing and which at least regionally surrounds light passing from the object plane as far as the image plane during the operation of the projection lens, and a reflective structure, which reduces a light proportion which reaches the image plane after reflection at the at least one partial housing, by comparison with an analogous arrangement without said reflective structure.
    Type: Application
    Filed: May 1, 2012
    Publication date: November 8, 2012
    Applicant: CARL ZEISS SMT GmbH
    Inventors: Ulrich Loering, Vladimir Kamenov, Dirk Heinrich Ehm, Stefan-Wolfgang Schmidt, Moritz Becker, Andreas Wurmbrand
  • Publication number: 20110222043
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Patent number: 7961297
    Abstract: A method for determining intensity distribution in the focal plane of a projection exposure arrangement, in which a large aperture imaging system is emulated and a light from a sample is represented on a local resolution detector by an emulation imaging system. A device for carrying out the method and emulated devices are also described. The invention makes it possible to improve a reproduction quality since the system apodisation is taken into consideration. The inventive method includes determining the integrated amplitude distribution in an output pupil, combining the integrated amplitude distribution with a predetermined apodization correction and calculating a corrected apodization image according to the modified amplitude distribution.
    Type: Grant
    Filed: September 2, 2006
    Date of Patent: June 14, 2011
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Joern Greif-Wuestenbecker, Beate Boehme, Ulrich Stroessner, Michael Totzeck, Vladimir Kamenov, Olaf Dittmann, Daniel Kraehmer, Toralf Gruner, Bernd Geh
  • Publication number: 20110038061
    Abstract: Catadioptric projection objective (1) for microlithography for imaging an object field (3) in an object plane (5) onto an image field (7) in an image plane (9). The objective includes a first partial objective (11) imaging the object field onto a first real intermediate image (13), a second partial objective (15) imaging the first intermediate image onto a second real intermediate image (17), and a third partial objective (19) imaging the second intermediate image onto the image field. The second partial objective is a catadioptric objective having exactly one concave mirror and having at least one lens (L21, L22). A first folding mirror (23) deflects the radiation from the object plane toward the concave mirror and a second folding mirror (25) deflects the radiation from the concave mirror toward the image plane. At least one surface of a lens (L21, L22) of the second partial objective has an antireflection coating having a reflectivity of less than 0.
    Type: Application
    Filed: September 18, 2009
    Publication date: February 17, 2011
    Applicant: Carl Zeiss SMT AG
    Inventors: Alexander EPPLE, Vladimir Kamenov, Toralf Gruner, Thomas Schicketanz
  • Patent number: 7808615
    Abstract: The invention concerns a method for operating a projection exposure apparatus to project the image of a structure of an object (5) arranged in an object plane (6) onto a substrate (10) arranged in an image plane (8). The object (5) is illuminated with light of an operating wavelength of the projection exposure apparatus according to one of several adjustable exposure modes. The light produces changes in at least one optical element (9) of the projection exposure apparatus, by which the optical properties of the projection exposure apparatus are influenced. The operation of the projection exposure apparatus makes allowance for the influencing of the optical properties of the projection exposure apparatus or a quantity dependent on the former, being calculated approximately on the basis of the exposure mode used and the structure of the object (5).
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: October 5, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Toralf Gruner, Olaf Conradi, Nils Dieckmann, Markus Schwab, Olaf Dittmann, Michael Totzeck, Daniel Kraehmer, Vladimir Kamenov
  • Publication number: 20100079739
    Abstract: A projection objective for applications in microlithography, a microlithography projection exposure apparatus with a projection objective, a microlithographic manufacturing method for microstructured components, and a component manufactured using such a manufacturing method are disclosed.
    Type: Application
    Filed: November 24, 2009
    Publication date: April 1, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Aksel Goehnermeier, Daniel Kraehmer, Vladimir Kamenov, Michael Totzeck
  • Publication number: 20090115986
    Abstract: Microlithography projection objectives for imaging into an image plane a pattern arranged in an object plane are described with respect to suppressing false light in such projection objectives.
    Type: Application
    Filed: May 23, 2006
    Publication date: May 7, 2009
    Applicant: Carl Zeiss SMT AG
    Inventors: Heiko Feldmann, Daniel Kraehmer, Jean-Claude Perrin, Julian Kaller, Aurelian Dodoc, Vladimir Kamenov, Olaf Conradi, Toralf Gruner, Thomas Okon, Alexander Epple
  • Publication number: 20080297754
    Abstract: The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
    Type: Application
    Filed: February 14, 2008
    Publication date: December 4, 2008
    Applicant: CARL ZEISS SMT AG
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Toralf Gruner, Karl-Stefan Weissenrieder, Heiko Feldmann, Achim Zirkel, Alexandra Pazidis, Bruno Thome, Stephan Six
  • Patent number: 7456933
    Abstract: In a method for improving the imaging properties of a projection objective of a microlithographic projection exposure apparatus, an appropriate illumination angle distribution adapted to a mask (24; 224) to be projected is selected. Then locations (40a, 40b; 60a, 60b; 80a, 80b, 80c) in an exit pupil of the projection objective (20), which are illuminated under these conditions by projection light during a projection of the mask, are determined. For at least one image point, an actual value of an imaging quantity, e.g. a wavefront profile or a polarization state, is determined that influences the imaging properties of the projection objective. Finally, corrective measures are calculated such that the actual value of the imaging quantity approximates a desired value at these locations. In this last step, however, deviations of the actual value from the desired value are taken into account exclusively at said locations illuminated in the exit pupil.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: November 25, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Ulrich Wegmann, Vladimir Kamenov, Thomas Muelders, Toralf Gruner, Markus Mengel
  • Publication number: 20080212060
    Abstract: A method for determining intensity distribution in the focal plane of a projection exposure arrangement, in which a large aperture imaging system is emulated and a light from a sample is represented on a local resolution detector by an emulation imaging system. A device for carrying out the method and emulated devices are also described. The invention makes it possible to improve a reproduction quality since the system apodisation is taken into consideration. The inventive method consists in includes determining the integrated amplitude distribution in an output pupil, combining the integrated amplitude distribution with a predetermined apodization correction and calculating a corrected apodization image according to the modified amplitude distribution.
    Type: Application
    Filed: September 2, 2006
    Publication date: September 4, 2008
    Applicant: CARL ZEISS SMS GMBH
    Inventors: Joern Greif-Wuestenbecker, Beate Boehme, Ulrich Stroessner, Michael Totzeck, Vladimir Kamenov, Olaf Dittmann, Daniel Kraehmer, Toralf Gruner, Bernd Geh
  • Patent number: 7355791
    Abstract: An optical system, for example a lens for a photolithography tool, includes a group of optical elements (L1, L2) that each comprise a birefringent cubic crystal such as CaF2. The crystal lattices of the crystals have different orientations, e.g. for reducing the overall retardance of the group by mutual compensation. The [110] crystal axis of at least one optical element (L1, L2) is tilted with respect to an optical axis (34) of the system (10) by a predefined tilting angle (?1, ?2) having an absolute value between 1° and 20°. This reduces the magnitude, but not significantly changes the orientation of intrinsic birefringence. By selecting an appropriate tilting angle it is possible to achieve a better performance of the optical system. For example, the overall retardance of the optical system may be reduced, or the angular retardance distribution may be symmetrized.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: April 8, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Vladimir Kamenov, Toralf Gruner
  • Patent number: 7321465
    Abstract: A numerical optimizing method serves to reduce harmful effects caused by intrinsic birefringence in lenses of a fluoride crystal material of cubic crystal structure in an objective, particularly a projection objective for a microlithography system. Under the optimizing method, an optimizing function which takes at least one birefringence-related image aberration into account is minimized. The birefringence-related image aberration is determined from a calculation for a light ray passing through the fluoride crystal lenses. To the extent that the birefringence-related image aberration is a function of parameters of the light ray, it depends only on geometric parameters of the light ray. The numerical optimizing method is used to produce objectives in which an optical retardation as well as an asymmetry of the optical retardation are corrected. The lenses are arranged in homogeneous groups, where each homogeneous group is corrected for the optical retardation asymmetry.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: January 22, 2008
    Assignee: Carl Zeiss SMT AG
    Inventors: Michael Totzeck, Vladimir Kamenov, Toralf Gruner
  • Publication number: 20080002167
    Abstract: The invention concerns a method for operating a projection exposure apparatus to project the image of a structure of an object (5) arranged in an object plane (6) onto a substrate (10) arranged in an image plane (8). The object (5) is illuminated with light of an operating wavelength of the projection exposure apparatus according to one of several adjustable exposure modes. The light produces changes in at least one optical element (9) of the projection exposure apparatus, by which the optical properties of the projection exposure apparatus are influenced. The operation of the projection exposure apparatus makes allowance for the influencing of the optical properties of the projection exposure apparatus or a quantity dependent on the former, being calculated approximately on the basis of the exposure mode used and the structure of the object (5).
    Type: Application
    Filed: June 28, 2006
    Publication date: January 3, 2008
    Applicant: Carl Zeiss SMT AG
    Inventors: Toralf Gruner, Olaf Conradi, Nils Dieckmann, Markus Schwab, Olaf Hmann, Michael Totzeck, Daniel Kraehmer, Vladimir Kamenov
  • Publication number: 20070195423
    Abstract: A method of determining materials of lenses contained in an optical system of a projection exposure apparatus is described. First, for each lens of a plurality of the lenses, a susceptibility factor KLT/LH is determined. This factor is a measure of the susceptibility of the respective lens to deteriorations caused by at least one of lifetime effects and lens heating effects. Then a birefringent fluoride crystal is selected as a material for each lens for which the susceptibility factor KLT/LH is above a predetermined threshold. Theses lenses are assigned to a first set of lenses. For these lenses, measures are determined for reducing adverse effects caused by birefringence inherent to the fluoride crystals.
    Type: Application
    Filed: January 25, 2007
    Publication date: August 23, 2007
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Michael Totzeck, Toralf Gruner, Aurelian Dodoc, David Shafer, Wilhelm Ulrich, Rudolf Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 7239450
    Abstract: A method of determining materials of lenses contained in an optical system of a projection exposure apparatus is described. First, for each lens of a plurality of the lenses, a susceptibility factor KLT/LH is determined. This factor is a measure of the susceptibility of the respective lens to deteriorations caused by at least one of lifetime effects and lens heating effects. Then a birefringent fluoride crystal is selected as a material for each lens for which the susceptibility factor KLT/LH is above a predetermined threshold. Theses lenses are assigned to a first set of lenses. For these lenses, measures are determined for reducing adverse effects caused by birefringence inherent to the fluoride crystals.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: July 3, 2007
    Assignee: Carl Zeiss SMT AG
    Inventors: Vladimir Kamenov, Daniel Kraehmer, Michael Totzeck, Toralf Gruner, Aurelian Dodoc
  • Publication number: 20060238735
    Abstract: An optical system of a microlithographic exposure apparatus has a pupil plane, a field plane and at least one intrinsically birefringent optical element that is positioned in or in close proximity to the field plane. A force application unit exerts mechanical forces to a correction optical element, which is positioned in or in close proximity to the pupil plane. The forces cause stress that induces a birefringence in the correction optical element such that a retardance distribution in an exit pupil is at least substantially rotationally symmetrical. An optical surface may be aspherically deformed such that a wavefront error, which is as result of deformations caused by the application of forces, is at least substantially corrected.
    Type: Application
    Filed: April 10, 2006
    Publication date: October 26, 2006
    Inventors: Vladimir Kamenov, Erwin Gaber, Daniel Kraehmer, Toralf Gruner