Patents by Inventor Vladimir Mikhalev

Vladimir Mikhalev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190206688
    Abstract: Methods of forming a portion of an integrated circuit include forming a patterned mask having an opening and exposing a surface of a semiconductor material, forming a first doped region at a first level of the semiconductor material through the opening, and isotropically removing a portion of the patterned mask to increase a width of the opening. The methods further include forming a second doped region at a second level of the semiconductor region through the opening after isotropically removing the portion of the patterned mask, wherein the second level is closer to the surface of the semiconductor material than the first level.
    Type: Application
    Filed: February 9, 2018
    Publication date: July 4, 2019
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Michael Violette, Vladimir Mikhalev
  • Patent number: 9991210
    Abstract: Semiconductor devices are described, along with methods and systems that include them. One such device includes a diffusion region in a semiconductor material, a terminal coupled to the diffusion region, and a field plate coupled to the terminal and extending from the terminal over the diffusion region to shield the diffusion region. Additional embodiments are also described.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: June 5, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Mikhalev, Michael Smith, Henry J. Fulford, Puneet Sharma, Zia A. Shafi
  • Publication number: 20160336276
    Abstract: Semiconductor devices are described, along with methods and systems that include them. One such device includes a diffusion region in a semiconductor material, a terminal coupled to the diffusion region, and a field plate coupled to the terminal and extending from the terminal over the diffusion region to shield the diffusion region. Additional embodiments are also described.
    Type: Application
    Filed: July 25, 2016
    Publication date: November 17, 2016
    Inventors: Vladimir Mikhalev, Michael Smith, Henry J. Fulford, Puneet Sharma, Zia A. Shafi
  • Patent number: 9406623
    Abstract: Semiconductor devices are described, along with methods and systems that include them. One such device includes a diffusion region in a semiconductor material, a terminal coupled to the diffusion region, and a field plate coupled to the terminal and extending from the terminal over the diffusion region to shield the diffusion region. Additional embodiments are also described.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: August 2, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Mikhalev, Michael Smith, Henry J. Fulford, Puneet Sharma, Zia A. Shafi
  • Patent number: 9337333
    Abstract: A transistor includes a gate dielectric over a semiconductor having a first conductivity type, a control gate over the gate dielectric, source and drain regions having a second conductivity type in the semiconductor having the first conductivity type, and strips having the second conductivity type within the semiconductor having the first conductivity type and interposed between the control gate and at least one of the source and drain regions.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: May 10, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Michael Smith, Vladimir Mikhalev, Puneet Sharma, Zia Alan Shafi, Henry Jim Fulford
  • Patent number: 9287260
    Abstract: In an embodiment, an array of transistors has a first line coupled to a first transistor. The first line extends over a second transistor that is successively adjacent to the first transistor and over a third transistor that is successively adjacent to the second transistor. A second line is coupled to the second transistor and extends over the third transistor. One or more first dummy lines are coupled to the first line and extend from the first transistor to the second transistor. One or more second dummy lines are coupled to the second line and extend from the second transistor to the third transistor. A collective width of the one or more first dummy lines is greater than a collective width of the one or more second dummy lines.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: March 15, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Michael A. Smith, Vladimir Mikhalev
  • Publication number: 20160071842
    Abstract: In an embodiment, an array of transistors has a first line coupled to a first transistor. The first line extends over a second transistor that is successively adjacent to the first transistor and over a third transistor that is successively adjacent to the second transistor. A second line is coupled to the second transistor and extends over the third transistor. One or more first dummy lines are coupled to the first line and extend from the first transistor to the second transistor. One or more second dummy lines are coupled to the second line and extend from the second transistor to the third transistor. A collective width of the one or more first dummy lines is greater than a collective width of the one or more second dummy lines.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 10, 2016
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Michael A. Smith, Vladimir Mikhalev
  • Publication number: 20150021707
    Abstract: Semiconductor devices are described, along with methods and systems that include them. One such device includes a diffusion region in a semiconductor material, a terminal coupled to the diffusion region, and a field plate coupled to the terminal and extending from the terminal over the diffusion region to shield the diffusion region. Additional embodiments are also described.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 22, 2015
    Inventors: Vladimir Mikhalev, Michael Smith, Henry J. Fulford, Puneet Sharma, Zia A. Shafi
  • Patent number: 8906771
    Abstract: Some embodiments include methods of forming isolation structures. A semiconductor base may be provided to have a crystalline semiconductor material projection between a pair of openings. SOD material (such as, for example, polysilazane) may be flowed within said openings to fill the openings. After the openings are filled with the SOD material, one or more dopant species may be implanted into the projection to amorphize the crystalline semiconductor material within an upper portion of said projection. The SOD material may then be annealed at a temperature of at least about 400° C. to form isolation structures. Some embodiments include semiconductor constructions that include a semiconductor material base having a projection between a pair of openings. The projection may have an upper region over a lower region, with the upper region being at least 75% amorphous, and with the lower region being entirely crystalline.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: December 9, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Mikhalev, Jim Fulford, Yongjun Jeff Hu, Gordon A. Haller, Lequn Liu
  • Publication number: 20140339648
    Abstract: A transistor includes a gate dielectric over a semiconductor having a first conductivity type, a control gate over the gate dielectric, source and drain regions having a second conductivity type in the semiconductor having the first conductivity type, and strips having the second conductivity type within the semiconductor having the first conductivity type and interposed between the control gate and at least one of the source and drain regions.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Michael Smith, Vladimir Mikhalev, Puneet Sharma, Zia Alan Shafi, Henry Jim Fulford
  • Patent number: 8853833
    Abstract: Semiconductor devices are described, along with methods and systems that include them. One such device includes a diffusion region in a semiconductor material, a terminal coupled to the diffusion region, and a field plate coupled to the terminal and extending from the terminal over the diffusion region to shield the diffusion region. Additional embodiments are also described.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: October 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Mikhalev, Michael Smith, Henry J. Fulford, Puneet Sharma, Zia A. Shafi
  • Patent number: 8815667
    Abstract: Methods of forming transistors and transistors are disclosed, such as a transistor having a gate dielectric over a semiconductor having a first conductivity type, a control gate over the gate dielectric, source and drain regions having a second conductivity type in the semiconductor having the first conductivity type, and strips having the second conductivity type within the semiconductor having the first conductivity type and interposed between the control gate and at least one of the source and drain regions.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 26, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Michael Smith, Vladimir Mikhalev, Puneet Sharma, Zia Alan Shafi, Henry Jim Fulford
  • Publication number: 20120329231
    Abstract: Some embodiments include methods of forming isolation structures. A semiconductor base may be provided to have a crystalline semiconductor material projection between a pair of openings. SOD material (such as, for example, polysilazane) may be flowed within said openings to fill the openings. After the openings are filled with the SOD material, one or more dopant species may be implanted into the projection to amorphize the crystalline semiconductor material within an upper portion of said projection. The SOD material may then be annealed at a temperature of at least about 400° C. to form isolation structures. Some embodiments include semiconductor constructions that include a semiconductor material base having a projection between a pair of openings. The projection may have an upper region over a lower region, with the upper region being at least 75% amorphous, and with the lower region being entirely crystalline.
    Type: Application
    Filed: September 4, 2012
    Publication date: December 27, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Vladimir Mikhalev, Jim Fulford, Yongjun Jeff Hu, Gordon A. Haller, Lequn Liu
  • Publication number: 20120313691
    Abstract: Semiconductor devices are described, along with methods and systems that include them. One such device includes a diffusion region in a semiconductor material, a terminal coupled to the diffusion region, and a field plate coupled to the terminal and extending from the terminal over the diffusion region to shield the diffusion region. Additional embodiments are also described.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 13, 2012
    Inventors: Vladimir Mikhalev, Michael Smith, Henry J. Fulford, Puneet Sharma, Zia A. Shafi
  • Patent number: 8274081
    Abstract: Some embodiments include methods of forming isolation structures. A semiconductor base may be provided to have a crystalline semiconductor material projection between a pair of openings. SOD material (such as, for example, polysilazane) may be flowed within said openings to fill the openings. After the openings are filled with the SOD material, one or more dopant species may be implanted into the projection to amorphize the crystalline semiconductor material within an upper portion of said projection. The SOD material may then be annealed at a temperature of at least about 400° C. to form isolation structures. Some embodiments include semiconductor constructions that include a semiconductor material base having a projection between a pair of openings. The projection may have an upper region over a lower region, with the upper region being at least 75% amorphous, and with the lower region being entirely crystalline.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: September 25, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Mikhalev, Jim Fulford, Yongjun Jeff Hu, Gordon A. Haller, Lequn Liu
  • Patent number: 8243526
    Abstract: A non-volatile microelectronic memory device that includes a depletion mode circuit protection device that prevents high voltages, which are applied to bitlines during an erase operation, from being applied to and damaging low voltage circuits which are electrically coupled to the bitlines.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: August 14, 2012
    Assignee: Intel Corporation
    Inventors: Michael Smith, Vladimir Mikhalev, Kenneth Marr, Haitao Liu
  • Patent number: 8102709
    Abstract: Transistors for use in semiconductor integrated circuit devices including a first source/drain region of the transistor is formed around a perimeter of a channel region, and a second source/drain region formed to extend below the channel region such that the channel region is formed around a perimeter of the source/drain region. Such transistors should facilitate a reduction in edge effect and leakage as the channel of the transistor is not bordering on an isolation region. Additionally, the use of a source/drain region extending through a channel region facilitates high-power, high-voltage operation.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: January 24, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Vladimir Mikhalev
  • Publication number: 20110227071
    Abstract: Some embodiments include methods of forming isolation structures. A semiconductor base may be provided to have a crystalline semiconductor material projection between a pair of openings. SOD material (such as, for example, polysilazane) may be flowed within said openings to fill the openings. After the openings are filled with the SOD material, one or more dopant species may be implanted into the projection to amorphize the crystalline semiconductor material within an upper portion of said projection. The SOD material may then be annealed at a temperature of at least about 400° C. to form isolation structures. Some embodiments include semiconductor constructions that include a semiconductor material base having a projection between a pair of openings. The projection may have an upper region over a lower region, with the upper region being at least 75% amorphous, and with the lower region being entirely crystalline.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 22, 2011
    Inventors: Vladimir Mikhalev, Jim Fulford, Yongjun Jeff Hu, Gordon A. Haller, Lequn Liu
  • Publication number: 20110140227
    Abstract: A non-volatile microelectronic memory device that includes a depletion mode circuit protection device that prevents high voltages, which are applied to bitlines during an erase operation, from being applied to and damaging low voltage circuits which are electrically coupled to the bitlines.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 16, 2011
    Inventors: Michael A. Smith, Vladimir Mikhalev, Kenneth Marr, Haitao Liu
  • Patent number: RE46005
    Abstract: A timing control circuit includes a synchronization circuit and a detection circuit. The synchronization circuit includes a main delay line configured to receive an input clock signal and delay the input clock signal by a time interval to generate an output clock signal and a control circuit configured to control the main delay line to vary the time interval to synchronize the input clock signal with a feedback clock signal generated from the output clock signal responsive to assertion of an enable signal. The detection circuit is configured to receive the input clock signal and the feedback clock signal, detect a phase alignment error between the input clock signal and the feedback clock signal, and assert the enable signal responsive to the phase alignment error exceeding a predetermined amount.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: May 17, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Mikhalev, Feng Lin