Patents by Inventor Voha Nuch

Voha Nuch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12111575
    Abstract: A coater with automatic cleaning function and a coater automatic cleaning method. The coater (100,200,300,400,500,600,700,800) includes a coater chamber (101,201,301,401,501,601,701,801) capable of being filled up with cleaning solution, a substrate chuck (102,202,302,402,502,602,702,802) holding and positioning a substrate (103,203,303,403,503,603,703,803), and at least one shroud (108,208,308,408,508) capable of moving up for preventing photoresist from splashing out of the coater chamber (101,201,301,401,501,601,701,801), or moving down and immersing into the cleaning solution for cleaning.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: October 8, 2024
    Assignee: ACM RESEARCH (SHANGHAI) INC.
    Inventors: Hui Wang, Fuping Chen, Wenjun Wang, Hongchao Yang, Voha Nuch, Fufa Chen, Jian Wang, Xiaoyan Zhang, Shu Yang
  • Publication number: 20210072645
    Abstract: A coater with automatic cleaning function and a coater automatic cleaning method. The coater (100,200,300,400,500,600,700,800) includes a coater chamber (101,201,301,401,501,601,701,801) capable of being filled up with cleaning solution, a substrate chuck (102,202,302,402,502,602,702,802) holding and positioning a substrate (103,203,303,403,503,603,703,803), and at least one shroud (108,208,308,408,508) capable of moving up for preventing photoresist from splashing out of the coater chamber (101,201,301,401,501,601,701,801), or moving down and immersing into the cleaning solution for cleaning.
    Type: Application
    Filed: October 26, 2020
    Publication date: March 11, 2021
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Fuping Chen, Wenjun Wang, Hongchao Yang, Voha Nuch, Fufa Chen, Jian Wang, Xiaoyan Zhang, Shu Yang
  • Patent number: 10816901
    Abstract: A coater with automatic cleaning function and a coater automatic cleaning method. The coater (100,200,300,400,500,600,700,800) includes a coater chamber (101,201,301,401,501,601,701,801) capable of being filled up with cleaning solution, a substrate chuck (102,202,302,402,502,602,702,802) holding and positioning a substrate (103,203,303,403,503,603,703,803), and at least one shroud (108,208,308,408,508) capable of moving up for preventing photoresist from splashing out of the coater chamber (101,201,301,401,501,601,701,801), or moving down and immersing into the cleaning solution for cleaning.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: October 27, 2020
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Fuping Chen, Wenjun Wang, Hongchao Yang, Voha Nuch, Fufa Chen, Jian Wang, Xiaoyan Zhang, Shu Yang
  • Patent number: 10020208
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5/N for each rotation of the chuck, where ? is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5?n during the cleaning process, where ? is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 10, 2018
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Hui Wang
  • Publication number: 20170248848
    Abstract: A coater with automatic cleaning function and a coater automatic cleaning method. The coater (100,200,300,400,500,600,700,800) includes a coater chamber (101,201,301,401,501,601,701,801) capable of being filled up with cleaning solution, a substrate chuck (102,202,302,402,502,602,702,802) holding and positioning a substrate (103,203,303,403,503,603,703,803), and at least one shroud (108,208,308,408,508) capable of moving up for preventing photoresist from splashing out of the coater chamber (101,201,301,401,501,601,701,801), or moving down and immersing into the cleaning solution for cleaning.
    Type: Application
    Filed: September 16, 2014
    Publication date: August 31, 2017
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Fuping Chen, Wenjun Wang, Hongchao Yang, Voha Nuch, Fufa Chen, Jian Wang, Xiaoyan Zhang, Shu Yang
  • Publication number: 20170140952
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5/N for each rotation of the chuck, where ? is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5?n during the cleaning process, where ? is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 18, 2017
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Hui Wang
  • Patent number: 9633833
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or counter clockwise.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 25, 2017
    Assignee: ACM RESEARCH (SHANGHAI) INC.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Yue Ma, Hui Wang
  • Patent number: 9595457
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5?/N for each rotation of the chuck, where ? is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5?n during the cleaning process, where ? is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: March 14, 2017
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Hui Wang
  • Publication number: 20170032959
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or counter clockwise.
    Type: Application
    Filed: September 30, 2016
    Publication date: February 2, 2017
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Yue Ma, Hui Wang
  • Patent number: 9492852
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or counter clockwise.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: November 15, 2016
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Yue Ma, Hui Wang
  • Patent number: 8671961
    Abstract: An apparatus for cleaning and conditioning the surface of a semiconductor substrate such as wafer includes a rotatable chuck, a chamber, a rotatable tray for collecting cleaning solution with one or more drain outlets, multiple receptors for collecting multiple cleaning solutions, a first motor to drive chuck, and a second motor to drive the tray. The drain outlet in the tray can be positioned directly above its designated receptor located under the drain outlet. The cleaning solution collected by the tray can be guided into designated receptor. One characteristic of the apparatus is having a robust and precisely controlled cleaning solution recycle with minimum cross contamination.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 18, 2014
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Voha Nuch, David Wang, Yue Ma, Fufa Chen, Jian Wang, Yunwen Huang, Liangzhi Xie, Chuan He
  • Publication number: 20140034094
    Abstract: An apparatus for cleaning and conditioning the surface of a semiconductor substrate such as wafer includes a rotatable chuck, a chamber, a rotatable tray for collecting cleaning solution with one or more drain outlets, multiple receptors for collecting multiple cleaning solutions, a first motor to drive chuck, and a second motor to drive the tray. The drain outlet in the tray can be positioned directly above its designated receptor located under the drain outlet. The cleaning solution collected by the tray can be guided into designated receptor. One characteristic of the apparatus is having a robust and precisely controlled cleaning solution recycle with minimum cross contamination.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 6, 2014
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Voha Nuch, David Wang, Yue Ma, Fufa Chen, Jian Wang, Yunwen Huang, Liangzhi Xie, Chuan He
  • Patent number: 8580042
    Abstract: An apparatus for cleaning and conditioning the surface of a semiconductor substrate such as wafer includes a rotatable chuck, a chamber, a rotatable tray for collecting cleaning solution with one or more drain outlets, multiple receptors for collecting multiple cleaning solutions, a first motor to drive chuck, and a second motor to drive the tray. The drain outlet in the tray can be positioned directly above its designated receptor located under the drain outlet. The cleaning solution collected by the tray can be guided into designated receptor. One characteristic of the apparatus is having a robust and precisely controlled cleaning solution recycle with minimum cross contamination.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: November 12, 2013
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Voha Nuch, David Wang, Yue Ma, Fufa Chen, Jian Wang, Yunwen Huang, Liangzhi Xie, Chuan He
  • Patent number: 8518224
    Abstract: The present invention provides a plating apparatus with multiple anode zones and cathode zones. The electrolyte flow field within each zone is controlled individually with independent flow control devices. A gas bubble collector whose surface is made into pleated channels is implemented for gas removal by collecting small bubbles, coalescing them, and releasing the residual gas. A buffer zone built within the gas bubble collector further allows unstable microscopic bubbles to dissolve.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: August 27, 2013
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Yue Ma, Xi Wang, Yunwen Huang, Zhenxu Pang, Voha Nuch, David Wang
  • Patent number: 8383429
    Abstract: The present invention provides an apparatus and method for rapid and uniform thermal treatment of semiconductor workpieces in two closely arranged thermal treatment chambers with a retractable door between them. The retractable door moves in between two thermal treatment chambers during heating or cooling process, and additional heating and cooling sources are provided for double-side thermal treatment of the semiconductor workpiece.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: February 26, 2013
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Yue Ma, Chuan He, Zhenxu Pang, David Wang, Voha Nuch
  • Publication number: 20120097195
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or count clockwise.
    Type: Application
    Filed: March 31, 2009
    Publication date: April 26, 2012
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Yue Ma, Hui Wang
  • Publication number: 20110290277
    Abstract: A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5?/N for each rotation of the chuck, where ? is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5?n during the cleaning process, where ? is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
    Type: Application
    Filed: December 12, 2008
    Publication date: December 1, 2011
    Inventors: Jian Wang, Sunny Voha Nuch, Liangzhi Xie, Junping Wu, Zhaowei Jia, Yunwen Huang, Zhifeng Gao, Hui Wang
  • Publication number: 20110114120
    Abstract: An apparatus for cleaning and conditioning the surface of a semiconductor substrate such as wafer includes a rotatable chuck, a chamber, a rotatable tray for collecting cleaning solution with one or more drain outlets, multiple receptors for collecting multiple cleaning solutions, a first motor to drive chuck, and a second motor to drive the tray. The drain outlet in the tray can be positioned directly above its designated receptor located under the drain outlet. The cleaning solution collected by the tray can be guided into designated receptor. One characteristic of the apparatus is having a robust and precisely controlled cleaning solution recycle with minimum cross contamination.
    Type: Application
    Filed: December 10, 2007
    Publication date: May 19, 2011
    Inventors: Voha Nuch, David Wang, Yue Ma, Fufa Chen, Jian Wang, Yunwen Huang, Liangzhi Xie, Chuan He
  • Publication number: 20110079247
    Abstract: The invention discloses a low-cost apparatus for chemical solution preparation with controlled process parameters such as chemical age, temperature, yield of active ingredients at the point of use. In addition, this apparatus provides chamber-to-chamber consistency on these parameters across multiple processing chambers on a single wafer wet-clean system. The invention also discloses a method to use chemical solution mixture resident time to achieve optimal combined effect of temperature, reactivity and yield of active ingredients of chemical solution mixture for best wafer treatment results.
    Type: Application
    Filed: March 17, 2008
    Publication date: April 7, 2011
    Inventors: Yue Ma, Chuan He, Guangtao Shi, Voha Nuch, Hui Wang
  • Publication number: 20110073469
    Abstract: A electrochemical deposition system which has a 3-D stacked architecture comprises a factory interface for receiving semiconductor wafers, a mainframe comprising a mainframe transfer robot and a plurality of wafer holder assemblies which disposed on the top thereof, a plurality of electroplating cells disposed within the mainframe, a plurality of cleaning cells disposed within the mainframe and located below the electroplating cells, a plurality of thermal treatment chambers disposed in between the mainframe and the factory interface, and a fluid distribution system fluidly connected to the electroplating cells and the cleaning cells, wherein the mainframe transfer robot transfers the semiconductor wafer from the factory interface and within the electroplating cells, the cleaning cells, and the thermal treatment chambers. As a result, the system of the present invention is expandable to accommodate newly-added processing units without overmuch increased footprint.
    Type: Application
    Filed: March 19, 2008
    Publication date: March 31, 2011
    Inventors: Yue Ma, Chuan He, Zhenxu Pang, Guangtao Shi, Jiexu Xia, Voha Nuch, Hui Wang