Patents by Inventor Wan-Chen Hsieh
Wan-Chen Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250015131Abstract: A method includes the following steps. A transistor including a first gate structure is formed on a first substrate. A first dielectric layer is deposited over the transistor using plasma enhanced atomic layer deposition (PEALD). A multilayer stack is formed on a second substrate. The multilayer stack comprises alternately stacked semiconductor layers and sacrificial layers. A second dielectric layer is deposited over the multilayer stack using a plasma enhanced atomic layer deposition (PEALD). The second dielectric layer is bonded with the first dielectric layer. The sacrificial layers are replaced with a second gate structure.Type: ApplicationFiled: July 6, 2023Publication date: January 9, 2025Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wan Chen HSIEH, Zhen-Cheng WU
-
Publication number: 20240413220Abstract: Semiconductor structures and methods of forming the same are provided. An exemplary method includes depositing a contact etch stop layer (CESL) and an interlayer dielectric (ILD) layer over a bottom epitaxial source/drain feature formed in a bottom portion of a source/drain trench, etching back the CESL and the ILD layer to expose a top portion of the source/drain trench, performing a plasma-enhanced atomic layer deposition process (PEALD) to form an insulating layer over the source/drain trench, where the insulating layer comprises a non-uniform deposition thickness and comprises a first portion in direct contact with the ILD layer and a second portion extending along a sidewall surface of the top portion of the source/drain trench. Method also includes removing the second portion of the insulating layer and forming a top bottom epitaxial source/drain feature on the second portion of the insulating layer and in the source/drain trench.Type: ApplicationFiled: September 27, 2023Publication date: December 12, 2024Inventors: Wan Chen Hsieh, Zhen-Cheng Wu, Tai-Jung Kuo
-
Publication number: 20240413157Abstract: Improved methods for forming gate isolation structures between portions of gate electrodes and semiconductor devices formed by the same are disclosed. In an embodiment, a method includes forming a channel structure over a substrate; forming a first isolation structure extending in a direction parallel to the channel structure; forming a dummy gate structure over the channel structure and the first isolation structure; depositing a hard mask layer over the dummy gate structure; etching the hard mask layer to form a first opening through the hard mask layer over the first isolation structure; conformally depositing a first dielectric layer over the hard mask layer, in the first opening, and over the dummy gate structure; etching the first dielectric layer to extend the first opening and expose the dummy gate structure; and etching the dummy gate structure to extend the first opening and expose the first isolation structure.Type: ApplicationFiled: June 13, 2024Publication date: December 12, 2024Inventors: Li-Fong Lin, Wan Chen Hsieh, Chung-Ting Ko, Tai-Chun Huang
-
Patent number: 12166035Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes an isolation structure formed over a semiconductor substrate. A first fin structure and a second fin structure extend from the semiconductor substrate and protrude above the isolation structure. A first gate structure is formed across the first fin structure and a second gate structure is formed across the second fin structure. A gate isolation structure is formed between the first fin structure and the second fin structure and separates the first gate structure from the second gate structure. The gate isolation structure includes a bowl-shaped insulating layer that has a first convex sidewall surface adjacent to the first gate structure and a second convex sidewall surface adjacent to the second gate structure.Type: GrantFiled: July 8, 2021Date of Patent: December 10, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wan-Chen Hsieh, Chung-Ting Ko, Tai-Chun Huang
-
Publication number: 20240379407Abstract: A method includes forming a first protruding fin and a second protruding fin over a base structure, with a trench located between the first protruding fin and the second protruding fin, depositing a trench-filling material extending into the trench, and performing a laser reflow process on the trench-filling material. In the reflow process, the trench-filling material has a temperature higher than a first melting point of the trench-filling material, and lower than a second melting point of the first protruding fin and the second protruding fin. After the laser reflow process, the trench-filling material is solidified. The method further includes patterning the trench-filling material, with a remaining portion of the trench-filling material forming a part of a gate stack, and forming a source/drain region on a side of the gate stack.Type: ApplicationFiled: July 25, 2024Publication date: November 14, 2024Inventors: Wen-Yen Chen, Li-Ting Wang, Wan-Chen Hsieh, Bo-Cyuan Lu, Tai-Chun Huang, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20240258390Abstract: A semiconductor device includes a substrate, a gate structure on the substrate, a source/drain (S/D) region and a contact. The S/D region is located in the substrate and on a side of the gate structure. The contact lands on and connected to the S/D region. The contact wraps around the S/D region.Type: ApplicationFiled: April 15, 2024Publication date: August 1, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Hsien Cheng, Jr-Hung Li, Tai-Chun Huang, Tze-Liang Lee, Chung-Ting Ko, Jr-Yu Chen, Wan-Chen Hsieh
-
Patent number: 12051700Abstract: Improved methods for forming gate isolation structures between portions of gate electrodes and semiconductor devices formed by the same are disclosed. In an embodiment, a method includes forming a channel structure over a substrate; forming a first isolation structure extending in a direction parallel to the channel structure; forming a dummy gate structure over the channel structure and the first isolation structure; depositing a hard mask layer over the dummy gate structure; etching the hard mask layer to form a first opening through the hard mask layer over the first isolation structure; conformally depositing a first dielectric layer over the hard mask layer, in the first opening, and over the dummy gate structure; etching the first dielectric layer to extend the first opening and expose the dummy gate structure; and etching the dummy gate structure to extend the first opening and expose the first isolation structure.Type: GrantFiled: December 19, 2022Date of Patent: July 30, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Li-Fong Lin, Wan Chen Hsieh, Chung-Ting Ko, Tai-Chun Huang
-
Patent number: 11984485Abstract: A semiconductor device includes a substrate, a gate structure on the substrate, a source/drain (S/D) region and a contact. The S/D region is located in the substrate and on a side of the gate structure. The contact lands on and connected to the S/D region. The contact wraps around the S/D region.Type: GrantFiled: March 3, 2022Date of Patent: May 14, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Hsien Cheng, Jr-Hung Li, Tai-Chun Huang, Tze-Liang Lee, Chung-Ting Ko, Jr-Yu Chen, Wan-Chen Hsieh
-
Publication number: 20240145249Abstract: A device includes first and second gate structures respectively extending across the first and second fins, and a gate isolation plug between a longitudinal end of the first gate structure and a longitudinal end of the second gate structure. The gate isolation plug comprises a first dielectric layer and a second dielectric layer over the first dielectric layer. The first dielectric layer has an upper portion and a lower portion below the upper portion. The upper portion has a thickness smaller than a thickness of the lower portion of the first dielectric layer.Type: ApplicationFiled: March 24, 2023Publication date: May 2, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Ting-Gang CHEN, Wan Chen HSIEH, Bo-Cyuan LU, Tai-Jung KUO, Kuo-Shuo HUANG, Chi-Yen TUNG, Tai-Chun HUANG
-
Publication number: 20240120236Abstract: A method includes etching a gate stack in a wafer to form a trench, depositing a silicon nitride liner extending into the trench, and depositing a silicon oxide layer. The process of depositing the silicon oxide layer includes performing a treatment process on the wafer using a process gas including nitrogen and hydrogen, and performing a soaking process on the wafer using a silicon precursor.Type: ApplicationFiled: April 25, 2023Publication date: April 11, 2024Inventors: Tai-Jung Kuo, Po-Cheng Shih, Wan Chen Hsieh, Zhen-Cheng Wu, Chia-Hui Lin, Tze-Liang Lee
-
Publication number: 20230335406Abstract: A method includes forming a semiconductor layer over a substrate; etching a portion of the semiconductor layer to form a first recess and a second recess; forming a first masking layer over the semiconductor layer; performing a first thermal treatment on the first masking layer, the first thermal treatment densifying the first masking layer; etching the first masking layer to expose the first recess; forming a first semiconductor material in the first recess; and removing the first masking layer.Type: ApplicationFiled: June 26, 2023Publication date: October 19, 2023Inventors: Wen-Ju Chen, Chung-Ting Ko, Wan-Chen Hsieh, Chun-Ming Lung, Tai-Chun Huang, Chi On Chui
-
Patent number: 11728173Abstract: A method includes forming a semiconductor layer over a substrate; etching a portion of the semiconductor layer to form a first recess and a second recess; forming a first masking layer over the semiconductor layer; performing a first thermal treatment on the first masking layer, the first thermal treatment densifying the first masking layer; etching the first masking layer to expose the first recess; forming a first semiconductor material in the first recess; and removing the first masking layer.Type: GrantFiled: September 30, 2020Date of Patent: August 15, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wen-Ju Chen, Chung-Ting Ko, Wan-Chen Hsieh, Chun-Ming Lung, Tai-Chun Huang, Chi On Chui
-
Publication number: 20230215758Abstract: A method includes forming a first protruding fin and a second protruding fin over a base structure, with a trench located between the first protruding fin and the second protruding fin, depositing a trench-filling material extending into the trench, and performing a laser reflow process on the trench-filling material. In the reflow process, the trench-filling material has a temperature higher than a first melting point of the trench-filling material, and lower than a second melting point of the first protruding fin and the second protruding fin. After the laser reflow process, the trench-filling material is solidified. The method further includes patterning the trench-filling material, with a remaining portion of the trench-filling material forming a part of a gate stack, and forming a source/drain region on a side of the gate stack.Type: ApplicationFiled: March 13, 2023Publication date: July 6, 2023Inventors: Wen-Yen Chen, Li-Ting Wang, Wan-Chen Hsieh, Bo-Cyuan Lu, Tai-Chun Huang, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20230116949Abstract: Improved methods for forming gate isolation structures between portions of gate electrodes and semiconductor devices formed by the same are disclosed. In an embodiment, a method includes forming a channel structure over a substrate; forming a first isolation structure extending in a direction parallel to the channel structure; forming a dummy gate structure over the channel structure and the first isolation structure; depositing a hard mask layer over the dummy gate structure; etching the hard mask layer to form a first opening through the hard mask layer over the first isolation structure; conformally depositing a first dielectric layer over the hard mask layer, in the first opening, and over the dummy gate structure; etching the first dielectric layer to extend the first opening and expose the dummy gate structure; and etching the dummy gate structure to extend the first opening and expose the first isolation structure.Type: ApplicationFiled: December 19, 2022Publication date: April 20, 2023Inventors: Li-Fong Lin, Wan Chen Hsieh, Chung-Ting Ko, Tai-Chun Huang
-
Publication number: 20230094267Abstract: A method of expanding natural killer cells, comprising: providing a population of internally gelated cells, each of which includes a gelated interior and a fluid cell membrane that contains one or more membrane-bound proteins each or collectively are capable of stimulating expansion of natural killer (NK) cells; and culturing a population of cells containing NK cells, which are capable of responding to the one or more membrane-bound proteins, with the population of internally gelated cells under conditions that allow expansion of NK cells.Type: ApplicationFiled: March 2, 2021Publication date: March 30, 2023Applicant: ACADEMIA SINICAInventors: Che-Ming Jack HU, Shih-Yu CHEN, Yi-Fu WANG, Wan-Chen HSIEH, Yi-Shiuan TZENG, Ya-Ting LU, Jung-Chen LIN, Chung-Yao HSU
-
Patent number: 11605555Abstract: A method includes forming a first protruding fin and a second protruding fin over a base structure, with a trench located between the first protruding fin and the second protruding fin, depositing a trench-filling material extending into the trench, and performing a laser reflow process on the trench-filling material. In the reflow process, the trench-filling material has a temperature higher than a first melting point of the trench-filling material, and lower than a second melting point of the first protruding fin and the second protruding fin. After the laser reflow process, the trench-filling material is solidified. The method further includes patterning the trench-filling material, with a remaining portion of the trench-filling material forming a part of a gate stack, and forming a source/drain region on a side of the gate stack.Type: GrantFiled: July 27, 2020Date of Patent: March 14, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wen-Yen Chen, Li-Ting Wang, Wan-Chen Hsieh, Bo-Cyuan Lu, Tai-Chun Huang, Huicheng Chang, Yee-Chia Yeo
-
Publication number: 20230011218Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes an isolation structure formed over a semiconductor substrate. A first fin structure and a second fin structure extend from the semiconductor substrate and protrude above the isolation structure. A first gate structure is formed across the first fin structure and a second gate structure is formed across the second fin structure. A gate isolation structure is formed between the first fin structure and the second fin structure and separates the first gate structure from the second gate structure. The gate isolation structure includes a bowl-shaped insulating layer that has a first convex sidewall surface adjacent to the first gate structure and a second convex sidewall surface adjacent to the second gate structure.Type: ApplicationFiled: July 8, 2021Publication date: January 12, 2023Inventors: Wan-Chen HSIEH, Chung-Ting KO, Tai-Chun HUANG
-
Publication number: 20220415888Abstract: A semiconductor structure includes a first gate stack across a first semiconductor fin structure, a second gate stack across a second semiconductor fin structure, a dielectric fin structure between the first semiconductor fin structure and the second semiconductor fin structure, and a gate cut isolation structure over the dielectric fin structure and between the first gate stack and the second gate stack. The gate cut isolation structure includes a protection layer and a fill layer over the protection layer, and the protection layer and the fill layer are made of different materials.Type: ApplicationFiled: April 15, 2022Publication date: December 29, 2022Inventors: Wan Chen Hsieh, Chung-Ting Ko, Tai-Chun Huang
-
Patent number: 11530479Abstract: In an embodiment, a method of forming a semiconductor device includes forming a hydrophobic coating on an inner surface of an exhaust line, connecting the exhaust line to a semiconductor processing chamber, introducing a first precursor into the semiconductor processing chamber, introducing a second precursor into the semiconductor processing chamber, wherein the first precursor reacts with the second precursor to form a layer of oxide material, and pumping the first precursor and the second precursor from the semiconductor processing chamber and through the exhaust line.Type: GrantFiled: October 18, 2019Date of Patent: December 20, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chung-Ting Ko, Wen-Ju Chen, Wan-Chen Hsieh, Ming-Fa Wu, Tai-Chun Huang, Yung-Cheng Lu, Chi On Chui
-
Patent number: 11532628Abstract: Improved methods for forming gate isolation structures between portions of gate electrodes and semiconductor devices formed by the same are disclosed. In an embodiment, a method includes forming a channel structure over a substrate; forming a first isolation structure extending in a direction parallel to the channel structure; forming a dummy gate structure over the channel structure and the first isolation structure; depositing a hard mask layer over the dummy gate structure; etching the hard mask layer to form a first opening through the hard mask layer over the first isolation structure; conformally depositing a first dielectric layer over the hard mask layer, in the first opening, and over the dummy gate structure; etching the first dielectric layer to extend the first opening and expose the dummy gate structure; and etching the dummy gate structure to extend the first opening and expose the first isolation structure.Type: GrantFiled: May 20, 2021Date of Patent: December 20, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Li-Fong Lin, Chung-Ting Ko, Wan Chen Hsieh, Tai-Chun Huang