Patents by Inventor Wang Mo Jung

Wang Mo Jung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150147655
    Abstract: Provided are lithium transition metal composite particle including a lithium transition metal oxide particle, a metal-doped layer formed by doping the lithium transition metal oxide particle, and LiF formed on the lithium transition metal oxide particle including the metal-doped layer, a preparation method thereof, and a lithium secondary battery including the lithium transition metal composite particles.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Sung Bin Park, Ji Hye Kim, Wang Mo Jung, Sang Seung Oh, Byung Chun Park
  • Publication number: 20150132651
    Abstract: Provided is a cathode active material including a complex coating layer, which includes M below, formed on a surface of the cathode active material through reaction of a lithium transition metal oxide represented by Formula 1 below with a coating precursor: LixMO2??(1) wherein M is represented by MnaM?1-b, M? is at least one selected from the group consisting of Al, Mg, Ni, Co, Cr, V, Fe, Cu, Zn, Ti and B, 0.95?x?1.5, and 0.5?a?1. The lithium secondary battery including the cathode active material exhibits improved lifespan and rate characteristics due to superior stability.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 14, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Bo Ram Lee, Hye Lim Jeon, Sun Sik Shin, Sangwook Lee, Wang Mo Jung
  • Publication number: 20150090927
    Abstract: Disclosed are a cathode active material including a lithium transition metal oxide based on at least one transition metal selected from the group consisting of Ni, Mn and Co, wherein at least one hetero element selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Bi, Zn and Zr is located at a surface portion of or inside the lithium transition metal oxide, and a secondary battery including the same. The cathode active material according to the present invention includes predetermined hetero elements at a surface thereof and therein, and, as such, a secondary battery based on the cathode active material may exhibit excellent high-speed charge characteristics and lifespan characteristics.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 2, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Publication number: 20150090926
    Abstract: Disclosed are a transition metal precursor for preparing a lithium composite transition metal oxide, a method for preparing the precursor, and a lithium composite transition metal oxide. The transition metal precursor includes a composite transition metal compound having a composition represented by Formula (1) and a Mn content of 60 to 85 mol %: NiaMbMn1-(a+b)(OH1-x)2??(1) where M is at least one selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and period II transition metals, 0.15?a?0.3, 0?b?0.1 and 0<x<0.5. The lithium composite transition metal oxide has a composition represented by Formula (2) and a Mn content of 60 to 85 mol %: Li1+z[NiaMbMn1-(a+b)]2O4-yAy??(2) where M is at least one selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr and period II transition metals, A is a monoanion or dianion, 0.15?a?0.3, 0.005?b?0.1, ?0.1?z?0.1 and 0?y?0.1.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 2, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Publication number: 20150079474
    Abstract: Disclosed herein is a high voltage cathode active material and a method for preparing the same. The cathode active material includes particles of a spinel-type compound having a composition represented by Formula (1) and a carbon-based material present on surfaces of the particles of the spinel-type compound: Li1+aMxMn2?xO4?zAz ??(1) where ?0.1?a?0.1, 0.3?x?0.8 and 0?z?0.1.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Publication number: 20150069293
    Abstract: Disclosed is a precursor for preparing a lithium composite transition metal oxide. More particularly, a transition metal precursor, including a composite transition metal compound represented by Formula 1 below, used to prepare a lithium transition metal oxide: NiaMbMn1?(a+b)(O1?x)2??(1) wherein M is at least one selected form the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and Period II transition metals; and 0.2?a?0.25, 0?b?0.1, and 0<x<0.5.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
  • Publication number: 20150064563
    Abstract: Provided are a method of manufacturing a lithium nickel complex oxide including mixing a nickel-containing mixed transition metal precursor, a lithium compound, and a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer, and heat treating the mixture, a lithium nickel complex oxide manufactured thereby, and a cathode active material including the lithium nickel complex oxide. The method of manufacturing a lithium nickel complex oxide according to an embodiment of the present invention may adjust a ratio of divalent nickel (NiII) to trivalent nickel (NiIII) by using a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer, and thus, the method may improve capacity of a secondary battery.
    Type: Application
    Filed: August 12, 2014
    Publication date: March 5, 2015
    Inventors: Ji Hye Kim, Sung Bin Park, Wang Mo Jung, Sang Seung Oh, Byung Chun Park
  • Publication number: 20150064557
    Abstract: Provided are a cathode active material including lithium transition metal phosphate particles, wherein the lithium transition metal phosphate particles include a first secondary particle formed by agglomeration of two or more first primary particles, and a second secondary particle formed by agglomeration of two or more second primary particles in the first secondary particle, and a method of preparing the same. Since the cathode active material according to an embodiment of the present invention may include first primary particles and second primary particles having different average particle diameters, the exfoliation of the cathode active material from a cathode collector may be minimized and performance characteristics, such as high output characteristics and an increase in available capacity, of a secondary battery may be further improved. In addition, since the first secondary particles are porous, the secondary particles are collapsed and fractured due to rolling when used in a cathode.
    Type: Application
    Filed: October 21, 2014
    Publication date: March 5, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Wang Mo Jung, Sang Seung Oh, Byung Chun Park, Sung Bin Park
  • Publication number: 20140356726
    Abstract: A hollow silicon-based particle including silicon (Si) or silicon oxide (SiOx, 0<x<2) particle including a hollow core part therein, wherein a size of the hollow core part is from 5 nm to 45 ?m, and a novel preparation method thereof are provided. Hollow is formed in the silicon-based particle, and volume expansion to the inward/outward of the silicon-based particle may be induced. Thus, the volume expansion of the silicon-based particle to the outward may be decreased, and the capacity properties and the life characteristics of a lithium secondary battery may be improved. According to the novel preparation method of the hollow silicon-based particle of the present invention, mass production is possible, producing rate is faster when compared to a common chemical vapor deposition (CVD) method or a vapor-liquid-solid (VLS) method, and the preparation method of the present invention is favorable when considering processes and safety.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 4, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Gi Beom Han, Hong Kyu Park, Wang Mo Jung, Sung Joong Kang, Chi Ho Jo, Ji Hoon Ryu
  • Publication number: 20140242455
    Abstract: Provided are a Si/C composite, in which carbon (C) is dispersed in an atomic state in a silicon (Si) particle, and a method of preparing the Si/C composite. Since the Si/C composite of the present invention is used as an anode active material, electrical conductivity may be further improved and volume expansion may be minimized. Thus, life characteristics of a lithium secondary battery may be improved.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hoon Ryu, Hong Kyu Park, Wang Mo Jung, Sung Joong Kang, Chi Ho Jo, Gi Beom Han
  • Publication number: 20140220444
    Abstract: Provided are a method of preparing iron oxide nanoparticles, iron oxide nanoparticles prepared thereby, and an anode material including the iron oxide nanoparticles.
    Type: Application
    Filed: April 9, 2014
    Publication date: August 7, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Myung Ki Lee, Sung Bin Park, Sung Joong Kang, Wang Mo Jung