Patents by Inventor Warren W. Ball

Warren W. Ball has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150283389
    Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a three-dimensional (3D) stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates the 3D stimulation field in a 3D environment to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to the 3D anatomical regions of the patient.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 8, 2015
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Patent number: 9061160
    Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a three-dimensional (3D) stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates the 3D stimulation field in a 3D environment to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to the 3D anatomical regions of the patient.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: June 23, 2015
    Assignee: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Publication number: 20150119846
    Abstract: In some examples, a method including wirelessly communicating, using an external medical device, with an implantable medical device via a telemetry head device, wherein the telemetry head device includes a power source configured to supply operational power to the telemetry head device; determining a first power level of the power source while the external medical device wirelessly communicates with the implantable medical device via the telemetry head device; suspending wireless communication between the implantable medical device and the external medical device based on the determined first power level. The wireless communication may be resumed, e.g., at the point communication was suspended, upon determining that the power level of the power source has been increased after the communication was suspended.
    Type: Application
    Filed: October 25, 2013
    Publication date: April 30, 2015
    Applicant: Medtronic, Inc.
    Inventors: Ajinkya M. Joglekar, Warren W. Ball, Timmothy S. Carlson, Matthew L. Plante
  • Patent number: 8838242
    Abstract: Method, controller and system for an implantable medical device having a plurality of electrodes, the implantable medical device capable of delivering therapeutic stimulation to a patient, comprising a control module, a user interface operatively coupled to the control module, the user interface providing control of the control module by a medical professional or other user, and an electrode interface operatively coupled between the plurality of electrodes and the control module. The control module uses the electrode interface to obtain a plurality of measurements of integrity metrics for a plurality of selected pairs of individual ones of the plurality of electrodes. The control module determines a prescriptive analysis using the plurality of measurements of integrity metrics of the selected pairs of individual ones of the plurality of electrodes comparative to a range, and the user interface displays the prescriptive analysis.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: September 16, 2014
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Warren W. Ball
  • Publication number: 20140107731
    Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a three-dimensional (3D) stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates the 3D stimulation field in a 3D environment to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to the 3D anatomical regions of the patient.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Applicant: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Publication number: 20140088666
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 27, 2014
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 8612024
    Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a three-dimensional (3D) stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates the 3D stimulation field in a 3D environment to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to the 3D anatomical regions of the patient.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: December 17, 2013
    Assignee: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Patent number: 8543217
    Abstract: The disclosure describes a method and system that generates stimulation parameters by selecting one or more stimulation parameters according to a stimulation field defined by a user. The system includes a memory that stores a plurality of stimulation templates for multiple electrode configurations of an electrical lead. A processor selects one or more volumetric stimulation templates that best match, e.g., fill, the three-dimensional stimulation field defined by the clinician. Each stimulation template is associated with a set of stimulation parameters that can be used to deliver stimulation therapy to a patient.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: September 24, 2013
    Assignee: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Patent number: 8538549
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 17, 2013
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 8452415
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. A programmer is configured to generate an electrical field model from selected stimulation parameters and patient anatomy data. The electrical field model indicates how the electrical field propagation would occur in the patient during therapy. In addition, the programmer may be configured to generate an activation field model from the electrical field model and a neuron model. The activation field indicates which neurons within the electrical field will be activated during the therapy. Either of these field models may be presented to the user via a user interface that also displays a representation of the lead implanted within the patient. The user interface may allow the user to adjust the stimulation therapy by manipulating displayed field or activation model representations.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 28, 2013
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 8380321
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: February 19, 2013
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 8376943
    Abstract: Patient input indicating the occurrence of an event and information relating to the event may be collected by a computing device. In some examples, the patient input is received via an event indication input mechanism of a medical device programmer. A clinician may review the event information to evaluate the efficacy of a therapy system (e.g., a particular therapy program or program group) or a patient's condition. In one example, a patient may activate an event indication input mechanism to indicate the occurrence of a seizure symptom, and input information relating to the seizure, such as the duration, severity, type of seizure or efficacy of a therapy system implemented to manage seizures.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: February 19, 2013
    Assignee: Medtronic, Inc.
    Inventors: Peter J. Kovach, Warren W. Ball, Sarah B. Alme, Nina M. Graves
  • Publication number: 20120316619
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 13, 2012
    Applicant: MEDTRONIC, INC.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 8195294
    Abstract: Method, controller and system for an implantable medical device capable of delivering therapeutic stimulation through a plurality of electrodes. A control module is operable to conduct a plurality of measurements of impedance values creating a plurality of measured impedance values for a plurality of selected sets of individual ones of the plurality of electrodes based on a plurality of active parameters. The control module conducts the plurality of measurements of impedance values in a plurality of stages in which at least one of said plurality of active parameters is varied between individual ones of the plurality of stages.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: June 5, 2012
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Todd V. Smith, Nathan A. Torgerson, Warren W. Ball
  • Patent number: 7848802
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a concentric axial view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: December 7, 2010
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 7826902
    Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates a stimulation field on the display to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to anatomical regions of the patient.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: November 2, 2010
    Assignee: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Patent number: 7822483
    Abstract: The disclosure describes a method and system that generates an electrical field model of defined stimulation therapy and displays the electrical field model to a user via a user interface. The electrical field model is generated based upon a patient anatomy and stimulation parameters to illustrate which areas of a patient anatomical region will be covered by the electrical field during therapy. In addition, a neuron model may be applied to the electrical field model to generate an activation field model. The activation field model indicates which neurons will be activated by the electrical field in the anatomical region. These field models may be used by a clinician to determine effective therapy prior to stimulation delivery. In particular, the field models may be beneficial when programming non axi-symmetric, or three-dimensional (3D), leads which allow greater flexibility in creating stimulation fields.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: October 26, 2010
    Assignee: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Patent number: 7676273
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. A user interface of a programmer allows a user to define stimulation therapy by interacting with one or more representations of the lead that delivers the therapy. The disclosure also contemplates selecting stimulation parameters to satisfy a user defined stimulation field by selecting one or more volumetric stimulation templates that best fit the stimulation field. The user interface may display the stimulation templates in relation to different perspectives of a lead and the stimulation field. Use of stimulation templates may simplify the determination of stimulation parameters in response to any of a variety of types of user definition of a stimulation field.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: March 9, 2010
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Patent number: 7657319
    Abstract: A method of programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The method further includes guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides an unwrapped two-dimensional array view of a lead and a concentric axial view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: February 2, 2010
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Publication number: 20090276009
    Abstract: Method, controller and system for an implantable medical device having a plurality of electrodes, the implantable medical device capable of delivering therapeutic stimulation to a patient, comprising a control module, a user interface operatively coupled to the control module, the user interface providing control of the control module by a medical professional or other user, and an electrode interface operatively coupled between the plurality of electrodes and the control module. The control module uses the electrode interface to obtain a plurality of measurements of integrity metrics for a plurality of selected pairs of individual ones of the plurality of electrodes. The control module determines a prescriptive analysis using the plurality of measurements of integrity metrics of the selected pairs of individual ones of the plurality of electrodes comparative to a range, and the user interface displays the prescriptive analysis.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Inventors: Steven M. Goetz, Warren W. Ball