Patents by Inventor Warren W. Ball

Warren W. Ball has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090276010
    Abstract: Method, controller and system for an implantable medical device having a plurality of electrodes, the implantable medical device capable of delivering therapeutic stimulation to a patient, comprising a control module, a user interface operatively coupled to the control module, the user interface providing control of the control module by a medical professional or other user, and an electrode interface operatively coupled between the plurality of electrodes and the control module. The control module uses the electrode interface to obtain a plurality of measurements of impedance values for a plurality of selected pairs of individual ones of the plurality of electrodes. The control module flags electrodes using the plurality of measurements of impedance values of the selected pairs of individual ones of the plurality of electrodes comparative to a range, and the delivery of therapy on flagged electrodes is inhibited.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Inventors: Steven M. Goetz, Todd V. Smith, Nathan A. Torgerson, Warren W. Ball
  • Publication number: 20090276007
    Abstract: Method, controller and system for an implantable medical device capable of delivering therapeutic stimulation through a plurality of electrodes. A control module is operable to conduct a plurality of measurements of impedance values creating a plurality of measured impedance values for a plurality of selected sets of individual ones of the plurality of electrodes based on a plurality of active parameters. The control module conducts the plurality of measurements of impedance values in a plurality of stages in which at least one of said plurality of active parameters is varied between individual ones of the plurality of stages.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Inventors: Steven M. Goetz, Todd V. Smith, Nathan A. Torgerson, Warren W. Ball
  • Publication number: 20090082640
    Abstract: Patient input indicating the occurrence of an event and information relating to the event may be collected by a computing device. In some examples, the patient input is received via an event indication input mechanism of a medical device programmer. A clinician may review the event information to evaluate the efficacy of a therapy system (e.g., a particular therapy program or program group) or a patient's condition. In one example, a patient may activate an event indication input mechanism to indicate the occurrence of a seizure symptom, and input information relating to the seizure, such as the duration, severity, type of seizure or efficacy of a therapy system implemented to manage seizures.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 26, 2009
    Applicant: Medtronic, Inc.
    Inventors: Peter J. Kovach, Warren W. Ball, Sarah B. Alme, Nina M. Graves
  • Publication number: 20090083070
    Abstract: An indication that a patient event occurred may be used to evaluate the efficacy of at least one therapy program and/or adjust therapy delivery to the patient. In some examples, the patient event indication includes patient input that may be received via an event indication button of a programming device. In some examples, therapy delivery may be adjusted by adjusting at least one therapy parameter value, switching therapy programs or therapy program groups or restarting a therapy cycle of a medical device.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 26, 2009
    Inventors: Jonathon E. Giftakis, Peter J. Kovach, Warren W. Ball, Jonathan C. Werder, Nina M. Graves, David C. Ullestad, Sarah B. Alme
  • Publication number: 20080103552
    Abstract: Method, controller and system for an implantable medical device having a plurality of electrodes, the implantable medical device capable of delivering therapeutic stimulation to a patient, comprising a control module, a user interface operatively coupled to the control module, the user interface providing control of the control module by a medical professional or other user, and an electrode interface operatively coupled between the plurality of electrodes and the control module. The control module uses the electrode interface to obtain a plurality of measurements of impedance values for a plurality of selected pairs of individual ones of the plurality of electrodes. The control module determines a prescriptive analysis using the plurality of measurements of impedance values of the selected pairs of individual ones of the plurality of electrodes comparative to a range, and the user interface displays the prescriptive analysis.
    Type: Application
    Filed: October 31, 2006
    Publication date: May 1, 2008
    Inventors: Steven M. Goetz, Todd V. Smith, Nathan A. Torgerson, Warren W. Ball
  • Publication number: 20070203546
    Abstract: The disclosure describes a method and system that generates an electrical field model of defined stimulation therapy and displays the electrical field model to a user via a user interface. The electrical field model is generated based upon a patient anatomy and stimulation parameters to illustrate which areas of a patient anatomical region will be covered by the electrical field during therapy. In addition, a neuron model may be applied to the electrical field model to generate an activation field model. The activation field model indicates which neurons will be activated by the electrical field in the anatomical region. These field models may be used by a clinician to determine effective therapy prior to stimulation delivery. In particular, the field models may be beneficial when programming non axi-symmetric, or three-dimensional (3D), leads which allow greater flexibility in creating stimulation fields.
    Type: Application
    Filed: October 31, 2006
    Publication date: August 30, 2007
    Applicant: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Publication number: 20070203538
    Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by selecting a structure of an anatomical region represented by an atlas. The atlas is a reference anatomical region of a reference anatomy that a clinician may use to identify structures of a patient anatomy that the clinician desires to stimulate during therapy. Selecting structures from the atlas may not provide the most efficacious stimulation therapy to the patient because of slight differences between the atlas and the patient anatomical region approximated by the atlas. However, structure selection may be efficient for the clinician, and allow the system to generate stimulation parameters that are adequate to treat the patient. The atlas may be most suitable for both axi-symmetric or three-dimensional leads having a complex electrode array geometry that allow greater flexibility in creating stimulation fields.
    Type: Application
    Filed: October 31, 2006
    Publication date: August 30, 2007
    Applicant: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Publication number: 20070203537
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides an unwrapped two-dimensional array view of a lead and a concentric axial view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: October 31, 2006
    Publication date: August 30, 2007
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Publication number: 20070203541
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: October 31, 2006
    Publication date: August 30, 2007
    Applicant: Medtronic, Inc
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Publication number: 20070203539
    Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates a stimulation field on the display to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to anatomical regions of the patient.
    Type: Application
    Filed: October 31, 2006
    Publication date: August 30, 2007
    Applicant: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Publication number: 20070203543
    Abstract: The disclosure describes a method and system that generates stimulation parameters by selecting one or more stimulation parameters according to a stimulation field defined by a user. The system includes a memory that stores a plurality of stimulation templates for multiple electrode configurations of an electrical lead. A processor selects one or more volumetric stimulation templates that best match, e.g., fill, the three-dimensional stimulation field defined by the clinician. Each stimulation template is associated with a set of stimulation parameters that can be used to deliver stimulation therapy to a patient.
    Type: Application
    Filed: October 31, 2006
    Publication date: August 30, 2007
    Applicant: Medtronic, Inc.
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Publication number: 20070203545
    Abstract: The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a three-dimensional (3D) stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates the 3D stimulation field in a 3D environment to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to the 3D anatomical regions of the patient.
    Type: Application
    Filed: October 31, 2006
    Publication date: August 30, 2007
    Inventors: Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Steven M. Goetz, Lynn M. Otten
  • Publication number: 20070203544
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a concentric axial view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
    Type: Application
    Filed: October 31, 2006
    Publication date: August 30, 2007
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Publication number: 20070203540
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. A programmer is configured to generate an electrical field model from selected stimulation parameters and patient anatomy data. The electrical field model indicates how the electrical field propagation would occur in the patient during therapy. In addition, the programmer may be configured to generate an activation field model from the electrical field model and a neuron model. The activation field indicates which neurons within the electrical field will be activated during the therapy. Either of these field models may be presented to the user via a user interface that also displays a representation of the lead implanted within the patient. The user interface may allow the user to adjust the stimulation therapy by manipulating displayed field or activation model representations.
    Type: Application
    Filed: October 31, 2006
    Publication date: August 30, 2007
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand
  • Publication number: 20070203542
    Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. A user interface of a programmer allows a user to define stimulation therapy by interacting with one or more representations of the lead that delivers the therapy. The disclosure also contemplates selecting stimulation parameters to satisfy a user defined stimulation field by selecting one or more volumetric stimulation templates that best fit the stimulation field. The user interface may display the stimulation templates in relation to different perspectives of a lead and the stimulation field. Use of stimulation templates may simplify the determination of stimulation parameters in response to any of a variety of types of user definition of a stimulation field.
    Type: Application
    Filed: October 31, 2006
    Publication date: August 30, 2007
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand