Patents by Inventor Wayne Morgan

Wayne Morgan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8249683
    Abstract: A system and method for calibrating a sensor of a characteristic monitoring system in real time utilizes a self-calibration module for periodic determination of, and compensation for, the IR drop across unwanted resistances in a cell. A current-interrupt switch is used to open the self-calibration module circuit and either measure the IR drop using a high-frequency (MHz) ADC module, or estimate it through linear regression of acquired samples of the voltage across the sensor's working and reference electrodes (Vmeasured) over time. The IR drop is then subtracted from the closed-circuit value of Vmeasured to calculate the overpotential that exists in the cell (Vimportant). Vimportant may be further optimized by subtracting the value of the open-circuit voltage (Voc) across the sensor's working and reference electrodes. The values of Vmeasured and Vimportant are then controlled by respective first and second control units to compensate for the IR drop.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 21, 2012
    Assignee: Medtronic Minimed, Inc.
    Inventors: Lu Wang, Rajiv Shah, Wayne A. Morgan, Barry Keenan
  • Publication number: 20120123690
    Abstract: A system and method for calibrating a sensor of a characteristic monitoring system in real time utilizes a self-calibration module for periodic determination of, and compensation for, the IR drop across unwanted resistances in a cell. A current-interrupt switch is used to open the self-calibration module circuit and either measure the IR drop using a high-frequency (MHz) ADC module, or estimate it through linear regression of acquired samples of the voltage across the sensor's working and reference electrodes (Vmeasured) over time. The IR drop is then subtracted from the closed-circuit value of Vmeasured to calculate the overpotential that exists in the cell (Vimportant). Vimportant may be further optimized by subtracting the value of the open-circuit voltage (Voc) across the sensor's working and reference electrodes. The values of Vmeasured and Vimportant are then controlled by respective first and second control units to compensate for the IR drop.
    Type: Application
    Filed: December 29, 2011
    Publication date: May 17, 2012
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: LU WANG, RAJIV SHAH, WAYNE A. MORGAN, BARRY KEENAN
  • Patent number: 8136291
    Abstract: A method and device for securely anchoring a plant protection structure is provided wherein a support system includes an anchoring post and a support section. The anchoring post presents a post section and an anchor section, wherein each anchor section is configured to angle away from the longitudinal axis as the anchoring post receives a force that drives the anchor section into the ground. The anchoring post is topped by a support module that may include one or more arms that support and/or help protect at least a portion of a plant or object. The arms are configurable to enable the device to help secure or protect plants or objects in a variety of embodiments as best suited to the needs of the object. The anchoring post may include solid or hollow continuous elongate elements that form both the post section and the anchor section.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: March 20, 2012
    Inventor: Wayne Morgan
  • Patent number: 8136293
    Abstract: A method and device for supporting a string and/or a sheet of material, such as a rope, a length of twine, a trellis netting or a barrier material is provided. A ground anchored device includes a rigid post and two or more flexible arms. The arms may be configured to support two or more sheets of material, wherein the sheets of material may further support plant growth. Alternately or additionally, one or more arms may be positioned to maintain string optionally bearing flags and/or barrier material to further discourage intrusion by animals. Horizontal lines may be extended from a plurality of devices to even further discourage intrusion by animals and/or to support the barrier material.
    Type: Grant
    Filed: August 28, 2010
    Date of Patent: March 20, 2012
    Inventor: Wayne Morgan
  • Patent number: 8004422
    Abstract: A programmable telemetry circuit that may be programmed for high bandwidth, low Q; low bandwidth, high Q; or for other parameters. The programmable telemetry circuit may include a first coil; a high impedance path having a first node connected to a first node of the first coil; a low impedance path having a first node connected to the first node of the first coil; a capacitive path having a first node connected to a second node of the first coil; and an input path for coupling signals into the high impedance path, the low impedance path, and the capacitive path. The low impedance path may be connected in parallel with the high impedance path. The capacitive path may form a circuitous path with the high impedance path and the low impedance path. The programmable circuit may be programmed to select the high impedance path or the low impedance path.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 23, 2011
    Assignee: Medtronic Minimed, Inc.
    Inventors: Wayne Morgan, Phillip B. Hess
  • Publication number: 20110130988
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: January 11, 2011
    Publication date: June 2, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20110125446
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic—cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 26, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20110125447
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 26, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20110113684
    Abstract: A method and device for supporting a string and/or a sheet of material, such as a rope, a length of twine, a trellis netting or a barrier material is provided. A ground anchored device includes a rigid post and two or more flexible arms. The arms may be configured to support two or more sheets of material, wherein the sheets of material may further support plant growth. Alternately or additionally, one or more arms may be positioned to maintain string optionally bearing flags and/or barrier material to further discourage intrusion by animals. Horizontal lines may be extended from a plurality of devices to even further discourage intrusion by animals and/or to support the barrier material.
    Type: Application
    Filed: August 28, 2010
    Publication date: May 19, 2011
    Inventor: WAYNE MORGAN
  • Publication number: 20110113686
    Abstract: A method and device for securely anchoring a plant protection structure is provided wherein a support system includes an anchoring post and a support section. The anchoring post presents a post section and an anchor section, wherein each anchor section is configured to angle away from the longitudinal axis as the anchoring post receives a force that drives the anchor section into the ground. The anchoring post is topped by a support module that may include one or more arms that support and/or help protect at least a portion of a plant or object. The arms are configurable to enable the device to help secure or protect plants or objects in a variety of embodiments as best suited to the needs of the object. The anchoring post may include solid or hollow continuous elongate elements that form both the post section and the anchor section.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 19, 2011
    Inventor: Wayne Morgan
  • Publication number: 20110101995
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 5, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20110106479
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 5, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundarapajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20110106480
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 5, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20110048938
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 3, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Publication number: 20110048941
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 3, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, WAYNE A. MORGAN, DAVID Y. CHOY, JAMES L. HENKE, BAHAR REGHABI, GOPIKRISHNAN SOUNDARARAJAN, PETER SCHULTZ, UDO HOSS
  • Publication number: 20110054281
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 3, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, WAYNE A. MORGAN, DAVID Y. CHOY, JAMES L. HENKE, BAHAR REGHABI, GOPIKRISHNAN SOUNDARARAJAN, PETER SCHULTZ, UDO HOSS
  • Publication number: 20110010105
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: January 13, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Publication number: 20110010104
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: January 13, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Publication number: 20100324853
    Abstract: A system and method for calibrating a sensor of a characteristic monitoring system in real time utilizes a self-calibration module for periodic determination of, and compensation for, the IR drop across unwanted resistances in a cell. A current-interrupt switch is used to open the self-calibration module circuit and either measure the IR drop using a high-frequency (MHz) ADC module, or estimate it through linear regression of acquired samples of the voltage across the sensor's working and reference electrodes (Vmeasured) over time. The IR drop is then subtracted from the closed-circuit value of Vmeasured to calculate the overpotential that exists in the cell (Vimportant). Vimportant may be further optimized by subtracting the value of the open-circuit voltage (Voc) across the sensor's working and reference electrodes. The values of Vmeasured and Vimportant are then controlled by respective first and second control units to compensate for the IR drop.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 23, 2010
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Lu Wang, Rajiv Shah, Wayne A. Morgan, Barry Keenan
  • Publication number: 20100280442
    Abstract: A relay device transfers information between a sensor system, which measures a physiological characteristic level of a user, and a fluid delivery system, which infuses a fluid into a user. The relay device includes a sensor system receiver for receiving communications from the sensor system in a sensor system format. The relay device also includes a processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format. The relay device further includes a delivery system transmitter for transmitting the converted communications in the delivery system format to the fluid delivery system. The sensor system and delivery system formats may utilize different frequencies and/or different communication protocols for communications transmitted between the sensor system and the fluid delivery system through the relay device.
    Type: Application
    Filed: April 28, 2010
    Publication date: November 4, 2010
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Varaz Shahmirian, Wayne A. Morgan, Sheldon B. Moberg, Cary D. Talbot, Arthur A. Campbell, Jay A. Yonemoto