METHOD OF AND SYSTEM FOR STABILIZATION OF SENSORS
A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
Latest MEDTRONIC MINIMED, INC. Patents:
- Miniaturized analyte sensor
- Extensible infusion devices and related methods
- Determination of adjustments to fluid delivery settings
- Micro models and layered prediction models for estimating sensor glucose values and reducing sensor glucose signal blanking
- Automatic configuration of user-specific data based on removal from service
This is a divisional of patent application Ser. No. 11/322,977, filed Dec. 30, 2005, which is incorporated herein by reference.
FIELD OF THE INVENTIONEmbodiments of this invention relate generally to methods and systems for stabilization of sensors during initial use of the sensors. More particularly, embodiments of this invention relate to systems and methods for providing an efficient way to stabilize the sensor in order for the sensor to provide accurate readings of a physiological condition of a subject.
DESCRIPTION OF RELATED ARTSubjects and medical personnel wish to monitor readings of physiological conditions within the subject's body. Illustratively, subjects wish to monitor blood glucose levels in a subject's body on a continuing basis. Presently, a patient can measure his/her blood glucose (BG) using a BG measurement device, such as a test strip meter, a continuous glucose measurement system, or a hospital hemacue. BG measurement devices use various methods to measure the BG level of a patient, such as a sample of the patient's blood, a sensor in contact with a bodily fluid, an optical sensor, an enzymatic sensor, or a fluorescent sensor. When the BG measurement device has generated a BG measurement, the measurement is displayed on the BG measurement device.
Current continuous glucose measurement systems include subcutaneous (or short-term) sensors and implantable (or long-term) sensors. For each of the short-term sensors and the long-term sensors, a patient has to wait a certain amount of time in order for the continuous glucose sensor to stabilize and to provide accurate readings. In many continuous glucose sensors, the subject must wait three hours for the continuous glucose sensor to stabilize before any glucose measurements are utilized. This is an inconvenience for the patient and in some cases may cause the patient not to utilize a continuous glucose measurement system.
Further, when a glucose sensor is first inserted into a patient's skin or subcutaneous layer, the glucose sensor does not operate in a stable state. The electrical readings from the sensor, which represent the glucose level of the patient, vary over a wide range of readings. In the past, sensor stabilization used to take several hours. A technique for sensor stabilization is detailed in U.S. Pat. No. 6,809,653, (“the '653 patent”) application Ser. No. 09/465,715, filed Dec. 19, 1999, issued Oct. 26, 2004, to Mann et al., assigned to Medtronic Minimed, Inc., which is incorporated herein by reference. In the '653 patent, the initialization process for sensor stabilization may be reduced to approximately one hour. A high voltage (e.g., 1.0-1.2 volts) may be applied for 1 to 2 minutes to allow the sensor to stabilize and then a low voltage (e.g., between 0.5-0.6 volts) may be applied for the remainder of the initialization process (e.g., 58 minutes or so). Thus, even with this procedure, sensor stabilization still requires a large amount of time.
It is also desirable to allow electrodes of the sensor to be sufficiently “wetted” or hydrated before utilization of the electrodes of the sensor. If the electrodes of the sensor are not sufficiently hydrated, the result may be inaccurate readings of the patient's physiological condition. A user of current blood glucose sensors is instructed to not power up the sensors immediately. If they are utilized too early, current blood glucose sensors do not operate in an optimal or efficient fashion. No automatic procedure or measuring technique is utilized to determine when to power on the sensor. This manual process is inconvenient and places too much responsibility on the patient, who may forget to apply or turn on the power source.
BRIEF SUMMARY OF THE INVENTIONIn an embodiment of the invention, a sensor is stabilized by applying a first voltage for a first time to initiate an anodic cycle in the sensor, by applying a second voltage for a second time to initiate a cathodic cycle in the sensor, and repeating the application of the first voltage and the second voltage to continue the anodic-cathodic cycle in the sensor. In an embodiment of the invention, a sensor may be stabilized by applying a first voltage for a first time, by waiting a predetermined period of time (i.e., not applying a voltage), and then cycling between the application of the first voltage and the waiting of a predetermined period of time for a number of iterations or a stabilization timeframe.
By utilizing the stabilization sequence identified above, the sensor has a faster run-in time, less background current exists in the sensor (due to suppression of background current, and the sensor has better glucose response. The first voltage may have a positive value or a negative value. The second voltage may have a positive value or negative value. Under certain operating conditions, a voltage magnitude of the first voltage for one of the iterations may have a different magnitude from a voltage magnitude of the first voltage for a second or different iteration.
In an embodiment of the invention, a voltage waveform, such as a ramp waveform, a stepped waveform, a sinusoid waveform, and a squarewave waveform, may be applied as the first voltage. Any of the above mentioned waveforms may also be applied as the second voltage. Under certain operating conditions, the voltage waveform applied as the first voltage in a first iteration of the stabilization method may differ from the voltage waveform applied as the first voltage in the second iteration. The same may hold true for the application of the second voltage. Under certain operating conditions, a voltage waveform may be applied as the first voltage to the sensor and a voltage pulse may be applied as the second voltage to the sensor.
In an embodiment of the invention, a plurality of short duration voltage pulses are applied for the first timeframe to initiate the anodic cycle in the sensor. In this embodiment, a plurality of short duration voltage pulses may be applied for the second timeframe to initiate the cathodic cycle in the sensor. The magnitude of the first plurality of short duration pulses may be different from the magnitude of the second plurality of short duration pulses. In an embodiment of the invention, the magnitude of some of the pulses in the first plurality of short duration pulses may have different values from the magnitude of other pulses in the first plurality of short duration pulses.
A detailed description of embodiments of the invention will be made with reference to the accompanying drawings, wherein like numerals designate corresponding parts in the figures.
In the following description, reference is made to the accompanying drawings which form a part hereof and which illustrate several embodiments of the present inventions. It is understood that other embodiments may be utilized and structural and operational changes may be made without departing from the scope of the present inventions.
The present invention described below with reference to flowchart illustrations of methods, apparatus, and computer program products. It will be understood that each block of the flowchart illustrations, and combinations of blocks in the flowchart illustrations, can be implemented by computer program instructions (as can any menu screens described in the Figures). These computer program instructions may be loaded onto a computer or other programmable data processing apparatus (such as a controller, microcontroller, or processor in a sensor electronics device to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create instructions for implementing the functions specified in the flowchart block or blocks. These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instructions which implement the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks, and/or menus presented herein.
In particular embodiments, the subcutaneous sensor set 10 facilitates accurate placement of a flexible thin film electrochemical sensor 12 of the type used for monitoring specific blood parameters representative of a user's condition. The sensor 12 monitors glucose levels in the body, and may be used in conjunction with automated or semi-automated medication infusion pumps of the external or implantable type as described in U.S. Pat. Nos. 4,562,751; 4,678,408; 4,685,903 or 4,573,994, to control delivery of insulin to a diabetic patient.
Particular embodiments of the flexible electrochemical sensor 12 are constructed in accordance with thin film mask techniques to include elongated thin film conductors embedded or encased between layers of a selected insulative material such as polyimide film or sheet, and membranes. The sensor electrodes 20 at a tip end of the sensing portion 18 are exposed through one of the insulative layers for direct contact with patient blood or other body fluids, when the sensing portion 18 (or active portion) of the sensor 12 is subcutaneously placed at an insertion site. The sensing portion 18 is joined to a connection portion 24 that terminates in conductive contact pads, or the like, which are also exposed through one of the insulative layers. In alternative embodiments, other types of implantable sensors, such as chemical based, optical based, or the like, may be used.
As is known in the art, the connection portion 24 and the contact pads are generally adapted for a direct wired electrical connection to a suitable monitor or sensor electronics device 100 for monitoring a user's condition in response to signals derived from the sensor electrodes 20. Further description of flexible thin film sensors of this general type are be found in U.S. Pat. No. 5,391,250, entitled METHOD OF FABRICATING THIN FILM SENSORS, which is herein incorporated by reference. The connection portion 24 may be conveniently connected electrically to the monitor or sensor electronics device 100 or by a connector block 28 (or the like) as shown and described in U.S. Pat. No. 5,482,473, entitled FLEX CIRCUIT CONNECTOR, which is also herein incorporated by reference. Thus, in accordance with embodiments of the present invention, subcutaneous sensor sets 10 may be configured or formed to work with either a wired or a wireless characteristic monitor system.
The sensor electrodes 20 may be used in a variety of sensing applications and may be configured in a variety of ways. For example, the sensor electrodes 20 may be used in physiological parameter sensing applications in which some type of biomolecule is used as a catalytic agent. For example, the sensor electrodes 20 may be used in a glucose and oxygen sensor having a glucose oxidase enzyme catalyzing a reaction with the sensor electrodes 20. The sensor electrodes 20, along with a biomolecule or some other catalytic agent, may be placed in a human body in a vascular or non-vascular environment. For example, the sensor electrodes 20 and biomolecule may be placed in a vein and be subjected to a blood stream, or may be placed in a subcutaneous or peritoneal region of the human body.
The monitor 100 may also be referred to as a sensor electronics device 100. The monitor 100 may include a power source 110, a sensor interface 122, processing electronics 124, and data formatting electronics 128. The monitor 100 may be coupled to the sensor set 10 by a cable 102 through a connector that is electrically coupled to the connector block 28 of the connection portion 24. In an alternative embodiment, the cable may be omitted. In this embodiment of the invention, the monitor 100 may include an appropriate connector for direct connection to the connection portion 104 of the sensor set 10. The sensor set 10 may be modified to have the connector portion 104 positioned at a different location, e.g., on top of the sensor set to facilitate placement of the monitor 100 over the sensor set.
In embodiments of the invention, the sensor interface 122, the processing electronics 124, and the data formatting electronics 128 are formed as separate semiconductor chips, however alternative embodiments may combine the various semiconductor chips into a single or multiple customized semiconductor chips. The sensor interface 122 connects with the cable 102 that is connected with the sensor set 10.
The power source 110 may be a battery. The battery can include three series silver oxide 357 battery cells. In alternative embodiments, different battery chemistries may be utilized, such as lithium based chemistries, alkaline batteries, nickel metalhydride, or the like, and different number of batteries may used. The monitor 100 provides power, through the power source 110, provides power, through the cable 102 and cable connector 104 to the sensor set. In an embodiment of the invention, the power is a voltage provided to the sensor set 10. In an embodiment of the invention, the power is a current provided to the sensor set 10. In an embodiment of the invention, the power is a voltage provided at a specific voltage to the sensor set 10.
The sensor electrodes 310 may be used in a variety of sensing applications and may be configured in a variety of ways. For example, the sensor electrodes 310 may be used in physiological parameter sensing applications in which some type of biomolecule is used as a catalytic agent. For example, the sensor electrodes 310 may be used in a glucose and oxygen sensor having a glucose oxidase enzyme catalyzing a reaction with the sensor electrodes 310. The sensor electrodes 310, along with a biomolecule or some other catalytic agent, may be placed in a human body in a vascular or non-vascular environment. For example, the sensor electrodes 310 and biomolecule may be placed in a vein and be subjected to a blood stream.
The sensor 355 creates a sensor signal indicative of a concentration of a physiological characteristic being measured. For example, the sensor signal may be indicative of a blood glucose reading. In an embodiment of the invention utilizing subcutaneous sensors, the sensor signal may represent a level of hydrogen peroxide in a subject. In an embodiment of the invention where blood or cranial sensors are utilized, the amount of oxygen is being measured by the sensor and is represented by the sensor signal. In an embodiment of the invention utilizing implantable or long-term sensors, the sensor signal may represent a level of oxygen in the subject. The sensor signal is measured at the working electrode 375. In an embodiment of the invention, the sensor signal may be a current measured at the working electrode. In an embodiment of the invention, the sensor signal may be a voltage measured at the working electrode.
The signal processor 390 receives the sensor signal (e.g., a measured current or voltage) after the sensor signal is measured at the sensor 355 (e.g., the working electrode). The signal processor 390 processes the sensor signal and generates a processed sensor signal. The measurement processor 395 receives the processed sensor signal and calibrates the processed sensor signal utilizing reference values. In an embodiment of the invention, the reference values are stored in a reference memory and provided to the measurement processor 395. The measurement processor 395 generates sensor measurements. The sensor measurements may be stored in a measurement memory (not pictured). The sensor measurements may be sent to a display/transmission device to be either displayed on a display in a housing with the sensor electronics or to be transmitted to an external device.
The sensor electronics device 360 may be a monitor which includes a display to display physiological characteristics readings. The sensor electronics device 360 may also be installed in a desktop computer, a pager, a television including communications capabilities, a laptop computer, a server, a network computer, a personal digital assistant (PDA), a portable telephone including computer functions, an infusion pump including a display, a glucose sensor including a display, and or a combination infusion pump/glucose sensor. The sensor electronics device 360 may be housed in a blackberry, a network device, a home network device, or an appliance connected to a home network.
The microcontroller 410 includes software program code, which when executed, or programmable logic which, causes the microcontroller 410 to transmit a signal to the DAC 420, where the signal is representative of a voltage level or value that is to be applied to the sensor 355. The DAC 420 receives the signal and generates the voltage value at the level instructed by the microcontroller 410. In embodiments of the invention, the microcontroller 410 may change the representation of the voltage level in the signal frequently or infrequently. Illustratively, the signal from the microcontroller 410 may instruct the DAC 420 to apply a first voltage value for one second and a second voltage value for two seconds.
The sensor 355 may receive the voltage level or value. In an embodiment of the invention, the counter electrode 365 may receive the output of an operational amplifier which has as inputs the reference voltage and the voltage value from the DAC 420. The application of the voltage level causes the sensor 355 to create a sensor signal indicative of a concentration of a physiological characteristic being measured. In an embodiment of the invention, the microcontroller 410 may measure the sensor signal (e.g., a current value) from the working electrode. Illustratively, a sensor signal measurement circuit 431 may measure the sensor signal. In an embodiment of the invention, the sensor signal measurement circuit 431 may include a resistor and the current may be passed through the resistor to measure the value of the sensor signal. In an embodiment of the invention, the sensor signal may be a current level signal and the sensor signal measurement circuit 431 may be a current-to-frequency (I/F) converter 430. The current-to-frequency converter 430 may measure the sensor signal in terms of a current reading, convert it to a frequency-based sensor signal, and transmit the frequency-based sensor signal to the microcontroller 410. In embodiments of the invention, the microcontroller 410 may be able to receive frequency-based sensor signals easier than non-frequency-based sensor signals. The microcontroller 410 receives the sensor signal, whether frequency-based or non frequency-based, and determines a value for the physiological characteristic of a subject, such as a blood glucose level. The microcontroller 410 may include program code, which when executed or run, is able to receive the sensor signal and convert the sensor signal to a physiological characteristic value. In an embodiment of the invention, the microcontroller 410 may convert the sensor signal to a blood glucose level. In an embodiment of the invention, the microcontroller 410 may utilize measurements stored within an internal memory in order to determine the blood glucose level of the subject. In an embodiment of the invention, the microcontroller 410 may utilize measurements stored within a memory external to the microcontroller 410 to assist in determining the blood glucose level of the subject.
After the physiological characteristic value is determined by the microcontroller 410, the microcontroller 410 may store measurements of the physiological characteristic values for a number of time periods. For example, a blood glucose value may be sent to the microcontroller 410 from the sensor every second or five seconds, and the microcontroller may save sensor measurements for five minutes or ten minutes of BG readings. The microcontroller 410 may transfer the measurements of the physiological characteristic values to a display on the sensor electronics device 360. For example, the sensor electronics device 360 may be a monitor which includes a display that provides a blood glucose reading for a subject. In an embodiment of the invention, the microcontroller 410 may transfer the measurements of the physiological characteristic values to an output interface of the microcontroller 410. The output interface of the microcontroller 410 may transfer the measurements of the physiological characteristic values, e.g., blood glucose values, to an external device, e.g., such as an infusion pump, a combined infusion pump/glucose meter, a computer, a personal digital assistant, a pager, a network appliance, a server, a cellular phone, or any computing device.
In a long-term sensor embodiment, where a glucose oxidase enzyme is used as a catalytic agent in a sensor, current may flow from the counter electrode 536 to a working electrode 534 only if there is oxygen in the vicinity of the enzyme and the sensor electrodes 510. Illustratively, if the voltage set at the reference electrode 532 is maintained at about 0.5 volts, the amount of current flowing from a counter electrode 536 to a working electrode 534 has a fairly linear relationship with unity slope to the amount of oxygen present in the area surrounding the enzyme and the electrodes. Thus, increased accuracy in determining an amount of oxygen in the blood may be achieved by maintaining the reference electrode 532 at about 0.5 volts and utilizing this region of the current-voltage curve for varying levels of blood oxygen. Different embodiments of the present invention may utilize different sensors having biomolecules other than a glucose oxidase enzyme and may, therefore, have voltages other than 0.5 volts set at the reference electrode.
As discussed above, during initial implantation or insertion of the sensor 510, a sensor 510 may provide inaccurate readings due to the adjusting of the subject to the sensor and also electrochemical byproducts caused by the catalyst utilized in the sensor. A stabilization period is needed for many sensors in order for the sensor 510 to provide accurate readings of the physiological parameter of the subject. During the stabilization period, the sensor 510 does not provide accurate blood glucose measurements. Users and manufacturers of the sensors may desire to improve the stabilization timeframe for the sensor so that the sensors can be utilized quickly after insertion into the subject's body or a subcutaneous layer of the subject.
In previous sensor electrode systems, the stabilization period or timeframe was one hour to three hours. In order to decrease the stabilization period or timeframe and increase the timeliness of accuracy of the sensor, a sensor (or electrodes of a sensor) may be subjected to a number of pulses rather than the application of one pulse followed by the application of another voltage.
The repeated application of the voltage and the non-application of the voltage results in the sensor (and thus the electrodes) being subjected to an anodic-cathodic cycle. The anodic-cathodic cycle results in the reduction of electrochemical byproducts which are generated by a patient's body reacting to the insertion of the sensor or the implanting of the sensor. In an embodiment of the invention, the electrochemical byproducts cause generation of a background current, which results in inaccurate measurements of the physiological parameter of the subject. In an embodiment of the invention, the electrochemical byproduct may be eliminated. Under other operating conditions, the electrochemical byproducts may be reduced or significantly reduced. A successful stabilization method results in the anodic-cathodic cycle reaching equilibrium, electrochemical byproducts being significantly reduced, and background current being minimized.
In an embodiment of the invention, the first voltage being applied to the electrode of the sensor may be a positive voltage. In an embodiment of the invention, the first voltage being applied may be a negative voltage. In an embodiment of the invention, the first voltage may be applied to a working electrode. In an embodiment of the invention, the first voltage may be applied to the counter electrode or the reference electrode.
In embodiments of the invention, the duration of the voltage pulse and the non-application of voltage may be equal, e.g., such as three minutes each. In embodiments of the invention, the duration of the voltage application or voltage pulse may be different values, e.g., the first time and the second time may be different. In an embodiment of the invention, the first time period may be five minutes and the waiting period may be two minutes. In an embodiment of the invention, the first time period may be two minutes and the waiting period (or second timeframe) may be five minutes. In other words, the duration for the application of the first voltage may be two minutes and there may be no voltage applied for five minutes. This timeframe is only meant to be illustrative and should not be limiting. For example, a first timeframe may be two, three, five or ten minutes and the second timeframe may be five minutes, ten minutes, twenty minutes, or the like. The timeframes (e.g., the first time and the second time) may depend on unique characteristics of different electrodes, the sensors, and/or the patient's physiological characteristics.
In embodiments of the invention, more or less than three pulses may be utilized to stabilize the glucose sensor. In other words, the number of iterations may be greater than 3 or less than three. For example, four voltage pulses (e.g., a high voltage followed by no voltage) may be applied to one of the electrodes or six voltage pulses may be applied to one of the electrodes.
Illustratively, three consecutive pulses of 1.07 volts (followed by three pulses of no volts) may be sufficient for a sensor implanted subcutaneously. In an embodiment of the invention, three consecutive voltage pulses of 0.7 volts may be utilized. The three consecutive pulses may have a higher or lower voltage value, either negative or positive, for a sensor implanted in blood or cranial fluid, e.g., the long-term or permanent sensors. In addition, more than three pulses (e.g., five, eight, twelve) may be utilized to create the anodic-cathodic cycling between anodic and cathodic currents in any of the subcutaneous, blood, or cranial fluid sensors.
In an embodiment of the invention, the first voltage may be 0.535 volts applied for five minutes, the second voltage may be 1.070 volts applied for two minutes, the first voltage of 0.535 volts may be applied for five minutes, the second voltage of 1.070 volts may be applied for two minutes, the first voltage of 0.535 volts may be applied for five minutes, and the second voltage of 1.070 volts may be applied for two minutes. In other words, in this embodiment, there are three iterations of the voltage pulsing scheme. The pulsing methodology may be changed in that the second timeframe, e.g., the timeframe of the application of the second voltage may be lengthened from two minutes to five minutes, ten minutes, fifteen minutes, or twenty minutes. In addition, after the three iterations are applied in this embodiment of the invention, a nominal working voltage of 0.535 volts may be applied.
The 1.070 and 0.535 volts are illustrative values. Other voltage values may be selected based on a variety of factors. These factors may include the type of enzyme utilized in the sensor, the membranes utilized in the sensor, the operating period of the sensor, the length of the pulse, and/or the magnitude of the pulse. Under certain operating conditions, the first voltage may be in a range of 1.00 to 1.09 volts and the second voltage may be in a range of 0.510 to 0.565 volts. In other operating embodiments, the ranges that bracket the first voltage and the second voltage may have a higher range, e.g., 0.3 volts, 0.6 volts, 0.9 volts, depending on the voltage sensitivity of the electrode in the sensor. Under other operating conditions, the voltage may be in a range of 0.8 volts to 1.34 volts and the other voltage may be in a range of 0.335 to 0.735. Under other operating conditions, the range of the higher voltage may be smaller than the range of the lower voltage. Illustratively, the higher voltage may be in a range of 0.9 to 1.09 volts and the lower voltage may be in a range of 0.235 to 0.835.
In an embodiment of the invention, the first voltage and the second voltage may be positive voltages, or alternatively in other embodiments of the invention, negative voltages. In an embodiment of the invention, the first voltage may be positive and the second voltage may be negative, or alternatively, the first voltage may be negative and the second voltage may be positive. The first voltage may be different voltage levels for each of the iterations. In an embodiment of the invention, the first voltage may be a D.C. constant voltage. In other embodiments of the invention, the first voltage may be a ramp voltage, a sinusoid-shaped voltage, a stepped voltage, a squarewave, or other commonly utilized voltage waveforms. In an embodiment of the invention, the second voltage may be a D.C. constant voltage, a ramp voltage, a sinusoid-shaped voltage, a stepped voltage, a squarewave, or other commonly utilized voltage waveforms. In an embodiment of the invention, the first voltage or the second voltage may be an AC signal riding on a DC waveform. In an embodiment of the invention, the first voltage may be one type of voltage, e.g., a ramp voltage, and the second voltage may be a second type of voltage, e.g., a sinusoid-shaped voltage. In an embodiment of the invention, the first voltage (or the second voltage) may have different waveform shapes for each of the iterations. For example, if there are three cycles in a stabilization method, in a first cycle, the first voltage may be a ramp voltage, in the second cycle, the first voltage may be a constant voltage, and in the third cycle, the first voltage may be a sinusoidal voltage.
In an embodiment of the invention, a duration of the first timeframe and a duration of the second timeframe may have the same value, or alternatively, the duration of the first timeframe and the second timeframe may have different values. For example, the duration of the first timeframe may be two minutes and the duration of the second timeframe may be five minutes and the number of iterations may be three. As discussed above, the stabilization method may include a number of iterations. In embodiments of the invention, during different iterations of the stabilization method, the duration of each of the first timeframes may change and the duration of each of the second timeframes may change. Illustratively, during the first iteration of the anodic-cathodic cycling, the first timeframe may be 2 minutes and the second timeframe may be 5 minutes. During the second iteration, the first timeframe may be 1 minute and the second timeframe may be 3 minutes. During the third iteration, the first timeframe may be 3 minutes and the second timeframe may be 10 minutes.
In an embodiment of the invention, a first voltage of 0.535 volts is applied to an electrode in a sensor for two minutes to initiate an anodic cycle, then a second voltage of 1.07 volts is applied to the electrode to the sensor for five minutes to initiate a cathodic cycle. The first voltage of 0.535 volts is then applied again for two minutes to initiate the anodic cycle and a second voltage of 1.07 volts is applied to the sensor for five minutes. In a third iteration, 0.535 volts is applied for two minutes to initiate the anodic cycle and then 1.07 volts is applied for five minutes. The voltage applied to the sensor is then 0.535 during the actual working timeframe of the sensor, e.g., when the sensor provides readings of a physiological characteristic of a subject.
Shorter duration voltage pulses may be utilized in the embodiment of
In embodiments of the invention utilizing short duration pulses, the voltage may not be applied continuously for the entire first time period. Instead, the voltage application device may transmit a number of short duration pulses during the first time period. In other words, a number of mini-width or short duration voltage pulses may be applied to the electrodes of the sensors over the first time period. Each mini-width or short duration pulse may have a width of a number of milliseconds. Illustratively, this pulse width may be 30 milliseconds, 50 milliseconds, 70 milliseconds or 200 milliseconds. These values are meant to be illustrative and not limiting. In an embodiment of the invention, such as the embodiment illustrated in
In an embodiment of the invention, each short duration pulse may have the same time duration within the first time period. For example, each short duration voltage pulse may have a time width of 50 milliseconds and each pulse delay between the pulses may be 950 milliseconds. In this example, if two minutes is the measured time for the first timeframe, then 120 short duration voltage pulses may be applied to the sensor. In an embodiment of the invention, each of the short duration voltage pulses may have different time durations. In an embodiment of the invention, each of the short duration voltage pulses may have the same amplitude values. In an embodiment of the invention, each of the short duration voltage pulses may have different amplitude values. By utilizing short duration voltage pulses rather than a continuous application of voltage to the sensors, the same anodic and cathodic cycling may occur and the sensor (e.g., electrodes) is subjected to less total energy or charge over time. The use of short duration voltage pulses utilizes less power as compared to the application of continuous voltage to the electrodes because there is less energy applied to the sensors (and thus the electrodes).
In embodiments of the invention, the analyzation module may be employed after an anodic/cathodic cycle of three applications of the first voltage and the second voltage to an electrode of the sensor. In an embodiment of the invention, an analyzation module may be employed after one application of the first voltage and the second voltage, as is illustrated in
In an embodiment of the invention, the analyzation module may be utilized to measure a voltage emitted after a current has been introduced across an electrode or across two electrodes. The analyzation module may monitor a voltage level at the electrode or at the receiving level. In an embodiment of the invention, if the voltage level is above a certain threshold, this may mean that the sensor is stabilized. In an embodiment of the invention, if the voltage level falls below a threshold level, this may indicate that the sensor is stabilized and ready to provide readings. In an embodiment of the invention, a current may be introduced to an electrode or across a couple of electrodes. The analyzation module may monitor a current level emitted from the electrode. In this embodiment of the invention, the analyzation module may be able to monitor the current if the current is different by an order of magnitude from the sensor signal current. If the current is above or below a current threshold, this may signify that the sensor is stabilized. Instead of comparing the monitored or measured current to a threshold, the monitored or measured current (or voltage, resistance, or impedance) may be compared to a set measurement criteria. If the measured reading matches or meets the set measurement criteria, timeframes for the first voltage and/or the second voltage may be modified or altered, magnitudes for the first voltage and/or the second voltage may be modified or altered, or the application of the first voltage and/or the second voltage may be terminated.
In an embodiment of the invention, the analyzation module may measure an impedance between two electrodes of the sensor. The analyzation module may compare the impedance against a threshold or target impedance value and if the measured impedance is lower than the target or threshold impedance, the sensor (and hence the sensor signal) may be stabilized. In an embodiment of the invention, the analyzation module may measure a resistance between two electrodes of the sensor. In this embodiment of the invention, if the analyzation module compares the resistance against a threshold or target resistance value and the measured resistance value is less than the threshold or target resistance value, then the analyzation module may determine that the sensor is stabilized and that the sensor signal may be utilized.
In an embodiment of the invention illustrated in
In an embodiment of the invention as illustrated in
In an embodiment of the invention, the voltage generation device generates a first voltage for a first timeframe and generates a second voltage for a second timeframe.
Under other operating conditions, the microcontroller 410 may generate a signal to the DAC 420 which instructs the DAC to output a ramp voltage. Under other operating conditions, the microcontroller 410 may generate a signal to the DAC 420 which instructs the DAC 420 to output a voltage simulating a sinusoidal voltage. These signals could be incorporated into any of the pulsing methodologies discussed above in the preceding paragraph or earlier in the application. In an embodiment of the invention, the microcontroller 410 may generate a sequence of instructions and/or pulses, which the DAC 420 receives and understands to mean that a certain sequence of pulses is to be applied. For example, the microcontroller 410 may transmit a sequence of instructions (via signals and/or pulses) that instruct the DAC 420 to generate a constant voltage for a first iteration of a first timeframe, a ramp voltage for a first iteration of a second timeframe, a sinusoidal voltage for a second iteration of a first timeframe, and a squarewave having two values for a second iteration of the second timeframe.
The microcontroller 410 may include programmable logic or a program to continue this cycling for a stabilization timeframe or for a number of iterations. Illustratively, the microcontroller 410 may include counting logic to identify when the first timeframe or the second timeframe has elapsed. Additionally, the microcontroller 410 may include counting logic to identify that a stabilization timeframe has elapsed. After any of the preceding timeframes have elapsed, the counting logic may instruct the microcontroller to either send a new signal or to stop transmission of a signal to the DAC 420.
The use of the microcontroller 410 allows a variety of voltage magnitudes to be applied in a number of sequences for a number of time durations. In an embodiment of the invention, the microcontroller 410 may include control logic or a program to instruct the digital-to-analog converter 420 to transmit a voltage pulse having a magnitude of approximately 1.0 volt for a first time period of 1 minute, to then transmit a voltage pulse having a magnitude of approximately 0.5 volts for a second time period of 4 minutes, and to repeat this cycle for four iterations. In an embodiment of the invention, the microcontroller 410 may be programmed to transmit a signal to cause the DAC 420 to apply the same magnitude voltage pulse for each first voltage in each of the iterations. In an embodiment of the invention, the microcontroller 410 may be programmed to transmit a signal to cause the DAC to apply a different magnitude voltage pulse for each first voltage in each of the iterations. In this embodiment of the invention, the microcontroller 410 may also be programmed to transmit a signal to cause the DAC 420 to apply a different magnitude voltage pulse for each second voltage in each of the iterations. Illustratively, the microcontroller 410 may be programmed to transmit a signal to cause the DAC 420 to apply a first voltage pulse of approximately one volt in the first iteration, to apply a second voltage pulse of approximately 0.5 volts in the first iteration, to apply a first voltage of 0.7 volts and a second voltage of 0.4 volts in the second iteration, and to apply a first voltage of 1.2 and a second voltage of 0.8 in the third iteration.
The microcontroller 410 may also be programmed to instruct the DAC 420 to provide a number of short duration voltage pulses for a first timeframe. In this embodiment of the invention, rather than one voltage being applied for the entire first timeframe (e.g., two minutes), a number of shorter duration pulses may be applied to the sensor. In this embodiment, the microcontroller 410 may also be programmed to program the DAC 420 to provide a number of short duration voltage pulses for the second timeframe to the sensor. Illustratively, the microcontroller 410 may send a signal to cause the DAC to apply a number of short duration voltage pulses where the short duration is 50 milliseconds or 100 milliseconds. In between these short duration pulses the DAC may apply no voltage or the DAC may apply a minimal voltage. The DAC 420 may cause the microcontroller to apply the short duration voltage pulses for the first timeframe, e.g., two minutes. The microcontroller 410 may then send a signal to cause the DAC to either not apply any voltage or to apply the short duration voltage pulses at a magnitude of a second voltage for a second timeframe to the sensor, e.g., the second voltage may be 0.75 volts and the second timeframe may be 5 minutes. In an embodiment of the invention, the microcontroller 410 may send a signal to the DAC 420 to cause the DAC 420 to apply a different magnitude voltage for each of short duration pulses in the first timeframe and/or in the second timeframe. In an embodiment of the invention, the microcontroller 410 may send a signal to the DAC 420 to cause the DAC 420 to apply a pattern of voltage magnitudes to the short duration voltage pulses for the first timeframe or the second timeframe. For example, the microcontroller may transmit a signal or pulses instructing the DAC 420 to apply thirty 20 millisecond pulses to the sensor during the first timeframe. Each of the thirty 20 millisecond pulses may have the same magnitude or may have a different magnitude. In this embodiment of the invention, the microcontroller 410 may instruct the DAC 420 to apply short duration pulses during the second timeframe or may instruct the DAC 420 to apply another voltage waveform during the second timeframe.
Although the disclosures in
In an embodiment of the invention illustrated in
In this embodiment of the invention, the processor 1050 may receive the hydration signal and only start utilizing the sensor signal (e.g., sensor measurements) after the hydration signal has been received. In another embodiment of the invention, the hydration detection circuit 1060 may be coupled between the sensor (the sensor electrodes 1020) and the signal processor 1040. In this embodiment of the invention, the hydration detection circuit 1060 may prevent the sensor signal from being sent to signal processor 1040 until the timer module 1065 has notified the hydration detection circuit 1060 that the set hydration time has elapsed. This is illustrated by the dotted lines labeled with reference numerals 1080 and 1081. Illustratively, the timer module 1065 may transmit a connection signal to a switch (or transistor) to turn on the switch and let the sensor signal proceed to the signal processor 1040. In an alternative embodiment of the invention, the timer module 1065 may transmit a connection signal to turn on a switch 1088 (or close the switch 1088) in the hydration detection circuit 1060 to allow a voltage from the regulator 1035 to be applied to the sensor 1012 after the hydration time has elapsed. In other words, in this embodiment of the invention, the voltage from the regulator 1035 will not be applied to the sensor 1012 until after the hydration time has elapsed.
In an embodiment of the invention, the mechanical switch 1160 may also notify the processor 1170 when the sensor 1120 has been disconnected from the sensor electronics device 1125. This is represented by dotted line 1176 in
As noted above, after the detection circuit 1260 has detected that a low level AC signal is present at the input terminal of the detection circuit 1260, the detection circuit 1260 may later detect that a high level AC signal, with low attenuation, is present at the input terminal. This represents that the sensor 1220 has been disconnected from the sensor electronics device 1225 or that the sensor is not operating properly. If the sensor has been disconnected from the sensor electronics device 1225, the AC source may be coupled with little or low attenuation to the input of the detection circuit 1260. As noted above, the detection circuit 1260 may generate an interrupt to the microcontroller. This interrupt may be received by the microcontroller and the microcontroller may reduce or eliminate power to one or a number of components or circuits in the sensor electronics device 1225. This may be referred to as the second interrupt. Again, this helps reduce power consumption of the sensor electronics device 1225, specifically when the sensor 1220 is not connected to the sensor electronics device 1225.
In an alternative embodiment of the election illustrated in
In an alternative embodiment of the invention, the AC source 1255 may be replaced by a DC source. If a DC source is utilized, then a resistance measuring element may be utilized in place of an impedance measuring element 1277. In an embodiment of the invention utilizing the resistance measuring element, once the resistance drops below a resistance threshold or a set criteria, the resistance measuring element may transmit a signal to the detection circuit 1260 (represented by dotted line 1293) or directly to the microcontroller indicating that the sensor is sufficiently hydrated and that power may be applied to the sensor.
In the embodiment of the invention illustrated in
If the sensor 1220 has been connected, but is not sufficiently hydrated or wetted, the effective capacitances Cr-c and Cw-r may not attenuate the AC signal from the AC source 1255. The electrodes in the sensor 1120 are dry before insertion and because the electrodes are dry, a good electrical path (or conductive path) does not exist between the two electrodes. Accordingly, a high level AC signal or lowly attenuated AC signal may still be detected by the detection circuit 1260 and no interrupt may be generated. Once the sensor has been inserted, the electrodes become immersed in the conductive body fluid. This results in a leakage path with lower DC resistance. Also, boundary layer capacitors form at the metal/fluid interface. In other words, a rather large capacitance forms between the metal/fluid interface and this large capacitance looks like two capacitors in series between the electrodes of the sensor. This may be referred to as an effective capacitance. In practice, a conductivity of an electrolyte above the electrode is being measured. In some embodiments of the invention, the glucose limiting membrane (GLM) also illustrates impedance blocking electrical efficiency. An unhydrated GLM results in high impedance, whereas a high moisture GLM results in low impedance. Low impedance is desired for accurate sensor measurements.
In an alternative embodiment of the invention, after the connection of the sensor to the sensor electronics device, an AC signal (e.g., a low voltage AC signal) may be applied 1340 to the sensor, e.g., the reference electrode of the sensor. The AC signal may be applied because the connection of the sensor to the sensor electronics device allows the AC signal to be applied to the sensor. After application of the AC signal, an effective capacitance forms 1350 between the electrode in the sensor that the voltage is applied to and the other two electrodes. A detection circuit determines 1360 what level of the AC signal is present at the input of the detection circuit. If a low level AC signal (or highly attenuated AC signal) is present at the input of the detection circuit, due to the effective capacitance forming a good electrical conduit between the electrodes and the resulting attenuation of the AC signal, an interrupt is generated 1370 by the detection circuit and sent to a microcontroller.
The microcontroller receives the interrupt generated by the detection circuit and transmits 1380 a signal to a digital-to-analog converter instructing or causing the digital-to-analog converter to apply a voltage to an electrode of the sensor, e.g., the counter electrode. The application of the voltage to the electrode of the sensor results in the sensor creating or generating a sensor signal 1390. A sensor signal measurement device 431 measures the generated sensor signal and transmits the sensor signal to the microcontroller. The microcontroller receives 1395 the sensor signal from the sensor signal measurement device, i.e., which is coupled to the working electrode, and processes the sensor signal to extract a measurement of a physiological characteristic of the subject or patient.
The microcontroller receives the interrupt and transmits 1380 a signal to a digital-to-analog converter to apply a voltage to the sensor. In an alternative embodiment of the invention, the digital-to-analog converter can apply a current to the sensor, as discussed above. The sensor, e.g., the working electrode, creates 1390 a sensor signal, which represents a physiological parameter of a patient. The microcontroller receives 1395 the sensor signal from a sensor signal measuring device, which measures the sensor signal at an electrode in the sensor, e.g., the working electrode. The microcontroller processes the sensor signal to extract a measurement of the physiological characteristic of the subject or patient, e.g., the blood glucose level of the patient.
In an embodiment of the invention, the detection circuit may determine 1432 that a high level AC signal has continued to be present at the input of the detection circuit (e.g., an input of a comparator), even after a hydration time threshold has elapsed. For example, the hydration time threshold may be 10 minutes. After 10 minutes has elapsed, the detection circuit may still be detecting that a high level AC signal is present. At this point in time, the detection circuit may transmit 1434 a hydration assist signal to the microcontroller. If the microcontroller receives the hydration assist signal, the microcontroller may transmit 1436 a signal to cause a DAC to apply a voltage pulse or a series of voltage pulses to assist the sensor in hydration. In an embodiment of the invention, the microcontroller may transmit a signal to cause the DAC to apply a portion of the stabilization sequence or other voltage pulses to assist in hydrating the sensor. In this embodiment of the invention, the application of voltage pulses may result in the low level AC signal (or highly attenuated signal) being detected 1438 at the detection circuit. At this point, the detection circuit may transmit an interrupt, as is disclosed in step 1430, and the microcontroller may initiate a stabilization sequence.
While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention. The presently disclosed embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description. All changes that come within the meaning of and range of equivalency of the claims are intended to be embraced therein.
Claims
1. A method of stabilizing a sensor having a plurality of electrodes, the method comprising:
- (a) applying a voltage to one of the plurality of electrodes for a first predetermined time period;
- (b) waiting a second predetermined time period with no voltage application;
- (c) measuring an electrical characteristic of the sensor; and
- (d) based on the electrical characteristic measurement, determining whether the sensor is stabilized.
2. The method of claim 1, wherein, in step (d), the sensor is determined to be stabilized if the electrical characteristic measurement meets set measurement criteria.
3. The method of claim 2, wherein said measurement criteria is met when the electrical characteristic measurement exceeds a threshold value.
4. The method of claim 1, further including terminating application of said voltage if the sensor is determined to be stabilized.
5. The method of claim 1, further including repeating steps (a)-(d) if the sensor is determined not to be stabilized.
6. The method of claim 5, wherein the duration of at least one of said first predetermined time period and said second predetermined time period is modified for said repetition of steps (a)-(d).
7. The method of claim 5, wherein the magnitude of said voltage is modified for said repetition of steps (a)-(d).
8. The method of claim 1, wherein, if the sensor is determined not to be stabilized, the method further includes repeating steps (a) and (b) for a plurality of iterations prior to proceeding to steps (c) and (d).
9. The method of claim 1, wherein the electrical characteristic is a resistance.
10. The method of claim 1, wherein the electrical characteristic is one of a voltage and a current.
11. The method of claim 1, wherein the voltage is a voltage waveform selected from the group consisting of a ramp waveform, a sinusoidal waveform, a stepped waveform, and a squarewave waveform.
12. The method of claim 1, wherein said voltage includes a plurality of voltage pulses.
13. The method of claim 12, wherein the number of said plurality of voltage pulses is modified and steps (a)-(d) are repeated if the sensor is determined not to be stabilized.
14. A program code storage device, comprising:
- a computer-readable storage medium; and
- a computer-readable program code, the computer-readable program code being stored on the computer-readable storage medium and having instructions, which when executed cause a controller to: (a) transmit a first signal to a digital-to-analog converter (DAC) that is coupled to an electrode of a sensor, the first signal being representative of a voltage that the DAC is to apply to said electrode for a first predetermined time period; (b) transmit a second signal instructing the DAC to refrain from applying any voltage to said electrode for a second predetermined time period; (c) transmit a measurement signal to initiate measurement of an electrical characteristic of the sensor; and (d) receive a third signal indicating whether the sensor is stabilized based on said electrical characteristic measurement.
15. The program code storage device of claim 14, wherein the sensor is determined to be stabilized if the electrical characteristic measurement meets set measurement criteria.
16. The program code storage device of claim 15, wherein said measurement criteria is met when the electrical characteristic measurement exceeds a threshold value.
17. The program code storage device of claim 14, wherein the electrical characteristic is a resistance.
18. The program code storage device of claim 14, wherein the electrical characteristic is one of a voltage and a current.
19. The program code storage device of claim 14, the computer-readable program code including instructions which, when executed, cause the controller to repeat transmission of said first signal followed by transmission of said second signal if the sensor is determined not to be stabilized.
20. The program code storage device of claim 19, the computer-readable program code including instructions which, when executed, cause the controller to modify the duration of at least one of said first predetermined time period and said second predetermined time period for said repeated transmission of the first and second signals.
21. The program code storage device of claim 19, the computer-readable program code including instructions which, when executed, cause the controller to modify the magnitude of said voltage for said repeated transmission of the first and second signals.
22. The program code storage device of claim 14, the computer-readable program code including instructions which, when executed, cause the controller to repeat steps (a) and (b) for a plurality of iterations before proceeding to step (c) when the sensor has been determined not to be stabilized.
23. The program code storage device of claim 14, the computer-readable program code including instructions which, when executed, cause the controller to terminate the transmission of the first and second signals if the sensor is determined to be stabilized.
24. The program code storage device of claim 14, wherein said voltage is a voltage waveform selected from the group consisting of a ramp waveform, a sinusoidal waveform, a stepped waveform, and a squarewave waveform.
25. The program code storage device of claim 14, wherein said voltage includes a plurality of voltage pulses.
26. The program code storage device of claim 25, the computer-readable program code including instructions which, when executed, cause the controller to modify the number of said plurality of voltage pulses and repeat steps (a)-(d) if the sensor is determined not to be stabilized.
Type: Application
Filed: Jan 11, 2011
Publication Date: May 5, 2011
Applicant: MEDTRONIC MINIMED, INC. (Northridge, CA)
Inventors: RAJIV SHAH (Rancho Palos Verdes, CA), Bahar Reghabi (Marina Del Rey, CA), James L. Henke (Simi Valley, CA), Wayne A. Morgan (Northridge, CA), Gopikrishnan Soundararajan (North Hills, CA), David Y. Choy (San Gabriel, CA), Peter Schultz (Chatsworth, CA), Udo Hoss (Sherman Oaks, CA)
Application Number: 13/004,631
International Classification: G06F 19/00 (20110101); G01R 35/00 (20060101);