Patents by Inventor Wayne Thomas McDermott

Wayne Thomas McDermott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070287812
    Abstract: The invention relates to an improvement in apparatus and process for the formation of a complex of Lewis acidic or Lewis basic gases in a reactive liquid of opposite character and for the breaking (fragmentation) of said complex associated with the recovery of the Lewis gas therefrom. The improvement resides in forming finely divided droplets of reactive liquid and controlling the temperature, pressure and concentration of said Lewis gas of opposite character to provide for (a) the formation of said complex between said gas and reactive liquid or (b) the breaking of said complex and the recovery of the atomized droplets of reactive liquid.
    Type: Application
    Filed: May 19, 2006
    Publication date: December 13, 2007
    Inventors: Wayne Thomas McDermott, Philip Bruce Henderson, Daniel Joseph Tempel, Ronald Martin Pearlstein, James Joseph Hart, Rosaleen Patricia Morris-Oskanian, Diwakar Garg
  • Patent number: 7307826
    Abstract: The present invention provides a method and apparatus for the dry fluxing of at least one component and/or solder surface via electron attachment. In one embodiment, there is provided a method for removing oxides from the surface of a component comprising: providing a component on a substrate wherein the substrate is grounded or has a positive electrical potential to form a target assembly; passing a gas mixture comprising a reducing gas through an ion generator comprising a first and a second electrode; supplying an amount of voltage to at least one of the first and second electrodes sufficient to generate electrons wherein the electrons attach to at least a portion of the reducing gas and form a negatively charged reducing gas; and contacting the target assembly with the negatively charged reducing gas to reduce the oxides on the component.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: December 11, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Richard E. Patrick, Alexander Schwarz
  • Patent number: 7282099
    Abstract: Method for processing an article by contacting the article with a dense fluid. The article is introduced into a sealable processing chamber and the processing chamber is sealed. A dense fluid is prepared by introducing a subcritical fluid into a pressurization vessel and isolating the vessel, and then heating the subcritical fluid at essentially constant volume and essentially constant density to yield a dense fluid. At least a portion of the dense fluid is transferred from the pressurization vessel to the processing chamber, wherein the transfer of the dense fluid is driven by the difference between the pressure in the pressurization vessel and the pressure in the processing chamber, thereby pressurizing the processing chamber with transferred dense fluid. The article is contacted with the transferred dense fluid to yield a spent dense fluid and a treated article, and the spent dense fluid is separated from the treated article.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: October 16, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Wayne Thomas McDermott, Richard Carl Ockovic, Alexander Schwarz
  • Patent number: 7267727
    Abstract: Method for processing an article with a dense processing fluid in a processing chamber while applying ultrasonic energy during processing. The dense fluid may be generated in a separate pressurization vessel and transferred to the processing chamber, or alternatively may be generated directly in the processing chamber. A processing agent may be added to the pressurization vessel, to the processing chamber, or to the dense fluid during transfer from the pressurization vessel to the processing chamber. The ultrasonic energy may be generated continuously at a constant frequency or at variable frequencies. Alternatively, the ultrasonic energy may be generated intermittently.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: September 11, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Wayne Thomas McDermott, Hoshang Subawalla, Andrew David Johnson, Alexander Schwarz
  • Patent number: 7201018
    Abstract: The invention relates to a process and apparatus for delivering an ultra high purity fluid comprising at least one component to a point of use at a required pressure without mechanical pumping. In one embodiment, a high purity feed comprising at least one component in gaseous or liquid form is charged into a vessel and at least partially converted to a solid phase source. As the feed is converted to a solid phase source, additional feed may be added until the vessel is at least substantially filled with a solid phase source or slush. Once filled, the solid phase source or slush may be isochorically heated whereby the solid phase source is converted to a product at an elevated pressure.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: April 10, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Vladimir Yliy Gershtein, Alexander Schwarz, Wayne Thomas McDermott, John Frederick Cirucci, John Christopher Ivankovits
  • Patent number: 7195676
    Abstract: Method for removing flux residue and defluxing residue from an article using a dense processing fluid and a dense rinse fluid is disclosed herein. In one embodiment, there is provided a method comprising: introducing the article comprising contaminants into a processing chamber; contacting the article with a dense processing fluid comprising a dense fluid, at least one processing agent, and optionally a cosolvent to provide a partially treated article; and contacting the partially treated article with a dense rinse fluid comprising the dense fluid and optionally the cosolvent to provide a treated article wherein an agitation source is introducing during at least a portion of the first and/or the second contacting step.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: March 27, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Wayne Thomas McDermott, Gene Everad Parris, Dean Van-John Roth, Hoshang Subawalla
  • Patent number: 7079370
    Abstract: The present invention provides a method and apparatus for the dry fluxing of at least one component and/or solder surface via electron attachment. In one embodiment, there is provided a method for removing oxides from the surface of a component comprising: providing a component on a substrate wherein the substrate is grounded or has a positive electrical potential to form a target assembly; passing a gas mixture comprising a reducing gas through an ion generator comprising a first and a second electrode; supplying an amount of voltage to at least one of the first and second electrodes sufficient to generate electrons wherein the electrons attach to at least a portion of the reducing gas and form a negatively charged reducing gas; and contacting the target assembly with the negatively charged reducing gas to reduce the oxides on the component.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: July 18, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Richard E. Patrick, Alexander Schwarz
  • Publication number: 20040231597
    Abstract: The present invention provides a method and apparatus for the dry fluxing of at least one component and/or solder surface via electron attachment. In one embodiment, there is provided a method for removing oxides from the surface of a component comprising: providing a component on a substrate wherein the substrate is grounded or has a positive electrical potential to form a target assembly; passing a gas mixture comprising a reducing gas through an ion generator comprising a first and a second electrode; supplying an amount of voltage to at least one of the first and second electrodes sufficient to generate electrons wherein the electrons attach to at least a portion of the reducing gas and form a negatively charged reducing gas; and contacting the target assembly with the negatively charged reducing gas to reduce the oxides on the component.
    Type: Application
    Filed: April 7, 2004
    Publication date: November 25, 2004
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Richard E. Patrick, Alexander Schwarz
  • Publication number: 20040226831
    Abstract: An apparatus and a method comprising same for removing metal oxides from a substrate surface are disclosed herein. In one particular embodiment, the apparatus comprises an electrode assembly that has a housing that is at least partially comprised of an insulating material and having an internal volume and at least one fluid inlet that is in fluid communication with the internal volume; a conductive base connected to the housing comprising a plurality of conductive tips that extend therefrom into a target area and a plurality of perforations that extend therethrough and are in fluid communication with the internal volume to allow for a passage of a gas mixture comprising a reducing gas.
    Type: Application
    Filed: April 7, 2004
    Publication date: November 18, 2004
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Alexander Schwarz, Gregory Khosrov Arslanian, Richard E. Patrick, Gary A. Orbeck, Donald A. Seccombe
  • Publication number: 20040226914
    Abstract: The present invention provides a method and apparatus for the dry fluxing of at least one component and/or solder surface via electron attachment. In one embodiment, there is provided a method for removing oxides from the surface of a component comprising: providing a component on a substrate wherein the substrate is grounded or has a positive electrical potential to form a target assembly; passing a gas mixture comprising a reducing gas through an ion generator comprising a first and a second electrode; supplying an amount of voltage to at least one of the first and second electrodes sufficient to generate electrons wherein the electrons attach to at least a portion of the reducing gas and form a negatively charged reducing gas; and contacting the target assembly with the negatively charged reducing gas to reduce the oxides on the component.
    Type: Application
    Filed: April 28, 2003
    Publication date: November 18, 2004
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Richard E. Patrick, Alexander Schwarz
  • Publication number: 20040211675
    Abstract: The present invention relates to a method for removing metal oxides from a substrate surface. In one particular embodiment, the method comprises: providing a substrate, a first, and a second electrode that reside within a target area; passing a gas mixture comprising a reducing gas through the target area; supplying an amount of energy to the first and/or the second electrode to generate electrons within the target area wherein at least a portion of the electrons attach to a portion of the reducing gas and form a negatively charged reducing gas; and contacting the substrate with the negatively charged reducing gas to reduce the metal oxides on the surface of the substrate.
    Type: Application
    Filed: April 28, 2003
    Publication date: October 28, 2004
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Alexander Schwarz, Gregory Khosrov Arslanian, Richard E. Patrick
  • Patent number: 6776330
    Abstract: A method of dry fluxing metal surfaces of one or more components to be soldered, comprising the steps of: a) providing one or more components to be soldered which are connected to a first electrode as a target assembly; b) providing a second electrode adjacent the target assembly; c) providing a gas mixture comprising a reducing gas between the first and second electrodes; d) providing a direct current (DC) voltage to the first and second electrodes and donating electrons to the reducing gas to form negatively charged ionic reducing gas; e) contacting the target assembly with the negatively charged ionic reducing gas and reducing oxides on the target assembly.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: August 17, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Richard E. Patrick, Brenda F. Ross
  • Publication number: 20040154333
    Abstract: This invention relates to a process and apparatus for delivering an ultra high purity fluid comprising at least one component to a point of use at a required pressure without pumping. In one embodiment, a high purity feed comprising at least one component in gaseous or liquid form is charged into a vessel and at least partially solidified, i.e., converted to a solid phase source. As the feed is converted to a solid phase source, additional feed may be added until the vessel is at least substantially filled with a solid phase source or slush. Once filled, the solid phase source or slush may be isochorically heated whereby the solid phase source is converted to a product at an elevated pressure. In other embodiments, an apparatus and a method for the production and collection of a high purity solid phase source or slush comprising at least component is disclosed herein.
    Type: Application
    Filed: January 9, 2004
    Publication date: August 12, 2004
    Inventors: Vladimir Yliy Gershtein, Alexander Schwarz, Wayne Thomas McDermott, John Frederick Cirucci, John Christopher Ivankovits
  • Publication number: 20040144399
    Abstract: Method for processing an article with a dense processing fluid in a processing chamber while applying ultrasonic energy during processing. The dense fluid may be generated in a separate pressurization vessel and transferred to the processing chamber, or alternatively may be generated directly in the processing chamber. A processing agent may be added to the pressurization vessel, to the processing chamber, or to the dense fluid during transfer from the pressurization vessel to the processing chamber. The ultrasonic energy may be generated continuously at a constant frequency or at variable frequencies. Alternatively, the ultrasonic energy may be generated intermittently.
    Type: Application
    Filed: December 16, 2003
    Publication date: July 29, 2004
    Inventors: Wayne Thomas McDermott, Hoshang Subawalla, Andrew David Johnson, Alexander Schwarz
  • Publication number: 20040055624
    Abstract: Method for processing an article by contacting the article with a dense fluid. The article is introduced into a sealable processing chamber and the processing chamber is sealed. A dense fluid is prepared by introducing a subcritical fluid into a pressurization vessel and isolating the vessel, and then heating the subcritical fluid at essentially constant volume and essentially constant density to yield a dense fluid. At least a portion of the dense fluid is transferred from the pressurization vessel to the processing chamber, wherein the transfer of the dense fluid is driven by the difference between the pressure in the pressurization vessel and the pressure in the processing chamber, thereby pressurizing the processing chamber with transferred dense fluid. The article is contacted with the transferred dense fluid to yield a spent dense fluid and a treated article, and the spent dense fluid is separated from the treated article.
    Type: Application
    Filed: September 24, 2002
    Publication date: March 25, 2004
    Inventors: Wayne Thomas McDermott, Richard Carl Ockovic, Alexander Schwarz
  • Publication number: 20040055621
    Abstract: Method for processing an article with a dense processing fluid in a processing chamber while applying ultrasonic energy during processing. The dense fluid may be generated in a separate pressurization vessel and transferred to the processing chamber, or alternatively may be generated directly in the processing chamber. A processing agent may be added to the pressurization vessel, to the processing chamber, or to the dense fluid during transfer from the pressurization vessel to the processing chamber. The ultrasonic energy may be generated continuously at a constant frequency or at variable frequencies. Alternatively, the ultrasonic energy may be generated intermittently.
    Type: Application
    Filed: September 24, 2002
    Publication date: March 25, 2004
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Wayne Thomas McDermott, Hoshang Subawalla, Andrew David Johnson, Alexander Schwarz
  • Patent number: 6637998
    Abstract: A mobile, self-evacuating, micro-environment system for transit and storage of substrates between two or more processing chambers in the manufacture of semiconductor devices is provided where the system includes a mobile cart, a vacuum sealable container to hold the substrates, a vacuum source having a portable power source, located on the cart and capable of generating a vacuum in the container, and a docking valve to mate with a corresponding valve on each of the processing chambers, where the docking valve and the corresponding valve are securable to one another to form a substantially vacuum-tight seal and openable, while mated, to permit unloading and loading of substrates between the container and the processing chamber. A method of using the system is also provided.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: October 28, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Giles Langan, Wayne Thomas McDermott, Thomas Hsiao-Ling Hsiung
  • Publication number: 20030063965
    Abstract: A mobile, self-evacuating, micro-environment system for transit and storage of substrates between two or more processing chambers in the manufacture of semiconductor devices is provided where the system includes a mobile cart, a vacuum sealable container to hold the substrates, a vacuum source having a portable power source, located on the cart and capable of generating a vacuum in the container, and a docking valve to mate with a corresponding valve on each of the processing chambers, where the docking valve and the corresponding valve are securable to one another to form a substantially vacuum-tight seal and openable, while mated, to permit unloading and loading of substrates between the container and the processing chamber. A method of using the system is also provided.
    Type: Application
    Filed: October 1, 2001
    Publication date: April 3, 2003
    Inventors: John Giles Langan, Wayne Thomas McDermott, Thomas Hsiao-Ling Hsiung
  • Publication number: 20030047591
    Abstract: The present invention is a method of dry fluxing metal surfaces of one or more components to be soldered, comprising the steps of: a) providing one or more components to be soldered which are connected to a first electrode as a target assembly; b) providing a second electrode adjacent the target assembly; c) providing a gas mixture comprising a reducing gas between the first and second electrodes; d) providing a direct current (DC) voltage to the first and second electrodes and donating electrons to the reducing gas to form negatively charged ionic reducing gas; e) contacting the target assembly with the negatively charged ionic reducing gas and reducing oxides on the target assembly.
    Type: Application
    Filed: September 10, 2001
    Publication date: March 13, 2003
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Richard E. Patrick, Brenda F. Ross
  • Patent number: 6517608
    Abstract: An apparatus for removing particles from a gas in a high purity flowing gas system is provided which includes a flow tube inserted inline in the flowing gas system having an inlet and an outlet, a pressure sealed, electrically insulated feed-through integral to the flow tube, an emitter inserted through the feed-through into the flow tube to create a plasma in the gas to charge particles in the gas, and a collector surface in proximity to the emitter; whereby an electric field between the emitter and the collector surface draws the particles in the gas to the collector surface.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: February 11, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Wayne Thomas McDermott, Richard Carl Ockovic