Patents by Inventor Wayne V. Sorin

Wayne V. Sorin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160344478
    Abstract: Examples include generating a signal using a modulatable source. The signal may be propagated using a multi-mode fiber to receive the signal from the modulatable source. The fiber has a diameter d and a far-field divergence angle associated with the propagated signal that corresponds to a product of the diameter (d) and the far-field divergence angle. The product may be substantially between 1 micron radian and 4 micron radian. In some examples, the propagated signal may be received at a receiver from the multi-mode fiber.
    Type: Application
    Filed: August 5, 2016
    Publication date: November 24, 2016
    Inventors: Wayne V SORIN, Michael Renne Ty TAN, Shih-Yuan WANG
  • Publication number: 20160301188
    Abstract: A high contrast grating optoelectronic apparatus includes an optoelectronic device at a front surface of a substrate. The optoelectronic device is to one or both of emit light and detect light through a back surface of the substrate opposite the front surface. A high contrast grating (HCG) lens is adjacent to and spaced apart from the back surface of the substrate by a spacer. The spacer includes one or both of a wafer-bonded substrate and a cavity. The HCG lens is to focus the light.
    Type: Application
    Filed: October 29, 2013
    Publication date: October 13, 2016
    Applicant: HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
    Inventors: Sagi V. Mathai, Michael Renne Ty Tan, David A. Fattal, Wayne V. Sorin
  • Patent number: 9417390
    Abstract: A modulatable source is to generate a signal. A multi-mode fiber is to propagate the signal. The fiber is associated with a fiber d*NA, corresponding to a product of a fiber diameter (d) and a fiber numerical aperture (NA), substantially between 1 micron radian and 4 micron radian. A receiver is to receive the propagated signal.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: August 16, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne V Sorin, Michael Renne Ty Tan, Shih-Yuan Wang
  • Patent number: 9331782
    Abstract: An optical transmission system includes a lens wafer to couple light into an optical transmission medium. The lens wafer includes a set of collimating lenses on a first side of the lens wafer, the collimating lenses to collimate beams of light from a plurality of light sources. The lens wafer also includes a focusing element on a second side of the wafer opposing the first side. The focusing element is to focus the collimated beams of light into an optical transmission medium.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: May 3, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne V. Sorin, Michael Renne Ty Tan
  • Patent number: 9285544
    Abstract: An optical power splitter includes a zig-zag and a reflector element associated with the zig-zag. The zig-zag is to split an input signal based on the reflector element, and output a plurality of split signals.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 15, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Georgios Panotopoulos, Michael Renne Ty Tan, Paul Kessler Rosenberg, Sagi Varghese Mathai, Wayne V. Sorin, Susant K. Patra
  • Patent number: 9170377
    Abstract: An optical interconnect (200) includes: a reflective body (230) having a first reflective surface (235) and a second reflective surface (240) opposite the first reflective surface (235); a first optical waveguide (205) that directs a first optical signal received from a first communicating device (105) to the first reflective surface (235); a second optical waveguide (210) that directs the first optical signal from the first reflective surface (235) of the reflective body (230) to a second communicating device (110); a third optical waveguide (215) that directs a second optical signal received from the second communicating device (110) to the second reflective surface (240) of the reflective body (230); and a fourth optical waveguide (220) that directs the second optical signal from the second reflective surface (240) of the reflective body (230) to the first communicating device (105).
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: October 27, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Schlansker, Michael Renne Ty Tan, Shih-Yuan Wang, Wayne V. Sorin, Jose Renato G. Santos
  • Patent number: 9160481
    Abstract: An optical data system and method are disclosed. An optical data system includes an array of lasers that are modulated by the plurality of modulation signals to provide a plurality of pairs of orthogonally polarized optical data signals. The optical data system further includes an optical multiplexing system to combine each of the pairs of orthogonally polarized optical data signals to provide a plurality of dual-channel optical data signals.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: October 13, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wayne V. Sorin, Michael Renne Ty Tan, Sagi Varghese Mathai
  • Patent number: 9065587
    Abstract: An optical data system and method are disclosed. The system can be an integrated optical data transmission system that includes an array of lasers that are modulated by a plurality of modulation signals to provide a plurality of sets of optical data signals. Each of the optical data signals in each of the plurality of sets can have a distinct wavelength. The system can also include a wavelength division multiplexing system to combine each of the plurality of sets of optical data signals to generate a plurality of multi-channel optical data signals that are transmitted via a respective plurality of optical transmission media.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: June 23, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wayne V. Sorin, Michael Renne Ty Tan, Sagi Varghese Mathai
  • Patent number: 9052462
    Abstract: A method for constructing an area array waveguide power splitter includes preparing a reflective layer on a substrate and forming a core of an area array waveguide layer and alignment features for an optical fiber input and a plurality of optical fiber outputs atop the reflective layer, wherein the core of the area array waveguide layer and the alignment features are formed concurrently. The method also includes applying a reflective layer to the top and side surfaces of the core of the area array waveguide layer and exposing an input and exposing a plurality of outputs in the reflective layer.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: June 9, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Terrel Morris, Michael Renne Ty Tan, Wayne V Sorin, Paul Kessler Rosenberg, Sagi Varghese Mathai
  • Patent number: 9020006
    Abstract: Apparatuses and methods for high density laser optics are provided. An example, of a laser optics apparatus includes a plurality of vertical cavity surface emitting lasers (VCSELs) in a monolithically integrated array, a high contrast grating (HCG) integrated with an aperture of a vertical cavity of each of the plurality of the VCSELs to enable emission of a single lasing wavelength of a plurality of lasing wavelengths, and a plurality of single mode waveguides, each integrated with a grating coupler, that are connected to each of the plurality of the integrated VCSELs and the HCGs, where each of the grating couplers is aligned to an integrated VCSEL and HCG.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: April 28, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Renne Ty Tan, David A. Fattal, Wayne V. Sorin, Sagi Varghese Mathai
  • Patent number: 9014519
    Abstract: An optoelectronic interface includes an optically transparent substrate; and an alignment layer comprising a pattern of alignment features disposed on said optically transparent substrate.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: April 21, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Paul Kessler Rosenberg, Wayne V. Sorin, Georgios Panotopoulos, Susant K. Patra
  • Patent number: 8948554
    Abstract: A slot-line waveguide optical switch system and method are disclosed. An optical switch system can include a slot-line waveguide optical switch that includes a plurality of wall portions that are each formed from a high refractive-index material and that are arranged to form a channel portion comprising an electro-optic material interposed to extend between the plurality of wall portions. The channel portion can include an input channel to receive an input optical signal and plural output channels to receive the input optical signal from the input channel. A channel switching system can provide a voltage to an electrode coupled to a corresponding wall portion to change a relative refractive index in the output channels via the electro-optic material and thereby switch the input optical signal to one of the output channels.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: February 3, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Lars Helge Thylen, Michael Renne Ty Tan, Alexandre M Bratkovski, Shih-Yuan Wang, Wayne V. Sorin, Michael Josef Stuke
  • Publication number: 20140376580
    Abstract: Apparatuses and methods for high density laser optics are provided. An example, of a laser optics apparatus includes a plurality of vertical cavity surface emitting lasers (VCSELs) in a monolithically integrated array, a high contrast grating (HCG) integrated with an aperture of a vertical cavity of each of the plurality of the VCSELs to enable emission of a single lasing wavelength of a plurality of lasing wavelengths, and a plurality of single mode waveguides, each integrated with a grating coupler, that are connected to each of the plurality of the integrated VCSELs and the HCGs, where each of the grating couplers is aligned to an integrated VCSEL and HCG.
    Type: Application
    Filed: January 18, 2012
    Publication date: December 25, 2014
    Inventors: Michael Renne Ty Tan, David A. Fattal, Wayne V. Sorin, Sagi Varghese Mathai
  • Publication number: 20140226934
    Abstract: An optical power splitter includes a zig-zag and a reflector element associated with the zig-zag. The zig-zag is to split an input signal based on the reflector element, and output a plurality of split signals.
    Type: Application
    Filed: September 30, 2011
    Publication date: August 14, 2014
    Inventors: Georgios Panotopoulos, Michael Renne Ty Tan, Paul Kessier Rosenberg, Sagi Varghese Mathai, Wayne V. Sorin, Aaron S. Patra
  • Publication number: 20140219606
    Abstract: A modulatable source is to generate a signal. A multi-mode fiber is to propagate the signal. The fiber is associated with a fiber d*NA, corresponding to a product of a fiber diameter (d) and a fiber numerical aperture (NA), substantially between 1 micron radian and 4 micron radian. A receiver is to receive the propagated signal.
    Type: Application
    Filed: August 31, 2011
    Publication date: August 7, 2014
    Inventors: Wayne V. Sorin, Michael Renne Ty Tan, Shih-Yuan Wang
  • Publication number: 20140219608
    Abstract: Waveguide array optical power splitters that provide compact, low-cost implementation of optical power splitting for one and two dimensional optical waveguide arrays are disclosed. The optical power splitters do not introduce mode dependent loss and preserve polarization, enabling the optical power splitters to be used with multimode and single mode light sources. In one aspect, an optical power splitter includes a beamsplitter to receive a plurality of incident beams of light. The beamsplitter splits each incident beam of light into a plurality of output beams of light with each output beam output in a different direction from the beamsplitter. The optical power splitter includes a first set of lenses with each lens to approximately collimate one of the incident beams of light, and includes a second set of lenses with each lens to focus the output beams of light.
    Type: Application
    Filed: July 29, 2011
    Publication date: August 7, 2014
    Inventors: Wayne V Sorin, Michael Renne Ty Tan, Sagi Varghese Mathai, Paul Kessler Rosenberg, Georgios Panotopoulos
  • Publication number: 20140205237
    Abstract: A mechanically aligned optical engine includes an optoelectronic component connected to a first side of a bench substrate and a transparent substrate bonded to a second side of the bench substrate. The transparent substrate comprises a mechanical feature designed to fit within an aperture of the bench substrate such that a lens formed onto the transparent substrate is aligned with an active region of the optoelectronic component.
    Type: Application
    Filed: September 6, 2011
    Publication date: July 24, 2014
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Paul Kessler Rosenberg, Wayne V. Sorin, Georgios Panotopoulos, Susant K. Patra
  • Patent number: 8699831
    Abstract: A method includes fabricating a circuit element and a connection to the circuit element for a photonic integrated circuit. The method includes associating a configurable material with the circuit element and activating the configurable material via a poling rail and the connection to the circuit element during production of the integrated circuit.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 15, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Lars Helge Thylen, Michael Renne Ty Tan, Shih-Yuan Wang, Alexandre M Bratkovski, Wayne V Sorin, Michael Josef Stuke
  • Publication number: 20140099120
    Abstract: An optical transmission system includes a lens wafer to couple light into an optical transmission medium. The lens wafer includes a set of collimating lenses on a first side of the lens wafer, the collimating lenses to collimate beams of light from a plurality of light sources. The lens wafer also includes a focusing element on a second side of the wafer opposing the first side. The focusing element is to focus the collimated beams of light into an optical transmission medium.
    Type: Application
    Filed: May 23, 2011
    Publication date: April 10, 2014
    Inventors: Wayne V Sorin, Michael Renne Ty Tan
  • Patent number: 8678600
    Abstract: An optical device may include a light transmissive medium having two sides. On one side may be a high reflectivity mirror and on the other side may be a plurality of partial reflectivity mirrors that may be guided mode resonance or nanodot mirrors. An optical system may have a plurality of light inputs, a light transmissive medium, and a plurality of light outputs from the light transmissive medium The light transmissive medium may have a high reflectivity mirror on one side and a plurality of partial reflectivity mirrors on a second side.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: March 25, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David A. Fattal, Michael Renne Ty Tan, Marco Fiorentino, Huei Pei Kuo, Wayne V. Sorin