Patents by Inventor Wei-Chieh Lin

Wei-Chieh Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120146138
    Abstract: The power device with low parasitic transistor comprises a recessed transistor and a heavily doped region at a side of a source region of the recessed transistor. The conductive type of the heavily doped region is different from that of the source region. In addition, a contact plug contacts the heavily doped region and connects the heavily doped region electrically. A source wire covers and contacts the source region and the contact plug to make the source region and the heavily doped region have the same electrical potential.
    Type: Application
    Filed: March 24, 2011
    Publication date: June 14, 2012
    Inventor: Wei-Chieh Lin
  • Patent number: 8198684
    Abstract: A power semiconductor device with drain voltage protection includes a semiconductor substrate, at least a trench gate transistor device and at least a trench ESD protection device. An upper surface of the semiconductor substrate has a first trench and a second trench. The trench gate transistor device is disposed in the first trench and the semiconductor substrate. The trench ESD protection device is disposed in the second trench, and includes a first doped region, a second doped region and a third doped region. The first doped region and the third doped region are respectively electrically connected to a drain and a gate of the trench gate transistor device.
    Type: Grant
    Filed: November 8, 2009
    Date of Patent: June 12, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Guo-Liang Yang, Jen-Hao Yeh, Jia-Fu Lin
  • Publication number: 20120139037
    Abstract: A manufacturing method of a depletion mode trench semiconductor device includes following steps. Firstly, a substrate including a drift epitaxial layer disposed thereon is provided. A trench is disposed in the drift epitaxial layer. A gate dielectric layer is formed on an inner sidewall of the trench and an upper surface of the drift epitaxial layer. A base doped region is formed in the drift epitaxial layer and adjacent to a side of the trench. A thin doped region is formed and conformally contacts the gate dielectric layer. A gate material layer is formed to fill the trench. A source doped region is formed in the base doped region, and the source doped region overlaps the thin doped region at a side of the trench. Finally, a contact doped region is formed to overlap the thin doped region, and the contact doped region is adjacent to the source doped region.
    Type: Application
    Filed: April 21, 2011
    Publication date: June 7, 2012
    Inventors: Wei-Chieh Lin, Jia-Fu Lin
  • Publication number: 20120126328
    Abstract: A semiconductor device includes an epitaxial layer having a first conductive type, and at least one first semiconductor layer and a second semiconductor layer having a second conductive type. The first semiconductor layer is disposed in the epitaxial layer of a peripheral region, and has an arc portion, and a first strip portion and a second strip portion extended from two ends of the arc portion. The first strip portion points to an active device region, and the second strip portion is perpendicular to the first strip portion The second semiconductor layer is disposed in the epitaxial layer of the peripheral region between the active device region and the second strip portion, and the second semiconductor has a sidewall facing and parallel to the first semiconductor layer.
    Type: Application
    Filed: February 11, 2011
    Publication date: May 24, 2012
    Inventor: Wei-Chieh Lin
  • Patent number: 8178923
    Abstract: A power semiconductor device having low gate input resistance and a manufacturing method thereof are provided. The power semiconductor device includes a substrate, at least a trench transistor, a conductive layer, a metal contact plug, an insulating layer, an interlayer dielectric, a gate metal layer, and a source metal layer. The metal contact plug can serve as a buried gate metal bus line, and the metal contact plug can pass under the source metal layer and keeps the area of the source metal layer complete. Accordingly, the present invention can provide a lower gate input resistance without dividing the source metal layer, so the source metal layer can have a larger and complete area for the following packaging and bonding process.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: May 15, 2012
    Assignee: Sinopower Semiconductor Inc.
    Inventors: Wei-Chieh Lin, Guo-Liang Yang, Jia-Fu Lin, Shian-Hau Liao
  • Patent number: 8168480
    Abstract: An integrated structure of an IGBT and a diode includes a plurality of doped cathode regions, and a method of forming the same is provided. The doped cathode regions are stacked in a semiconductor substrate, overlapping and contacting with each other. As compared with other doped cathode regions, the higher a doped cathode region is disposed, the larger implantation area the doped cathode region has. The doped cathode regions and the semiconductor substrate have different conductive types, and are applied as a cathode of the diode and a collector of the IGBT. The stacked doped cathode regions can increase the thinness of the cathode, and prevent the wafer from being overly thinned and broken.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: May 1, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Ho-Tai Chen, Jen-Hao Yeh, Li-Cheng Lin, Shih-Chieh Hung
  • Publication number: 20120056277
    Abstract: The present invention provides a semiconductor device including a semiconductor substrate having a first conductive type, at least one high-side transistor device and at least one low-side transistor device. The high-side transistor device includes a doped high-side base region having a second conductive type, a doped high-side source region having the first conductive type and a doped drain region having the first conductive type. The doped high-side base region is disposed within the semiconductor substrate, and the doped high-side source region and the doped drain region are disposed within the doped high-side base region. The doped high-side source region is electrically connected to the semiconductor substrate, and the semiconductor substrate is regarded as a drain of the low-side transistor device.
    Type: Application
    Filed: January 26, 2011
    Publication date: March 8, 2012
    Inventor: Wei-Chieh Lin
  • Publication number: 20120049263
    Abstract: A semiconductor device includes a semiconductor substrate having a conductive type, a source metal layer, a gate metal layer, at least one transistor device, a heavily doped region having the conductive type, a capacitor dielectric layer, a conductive layer. The source metal layer and the gate metal layer are disposed on the semiconductor substrate. The transistor device is disposed in the semiconductor substrate under the source metal layer. The heavily doped region, the capacitor dielectric layer and the conductive layer constitute a capacitor structure, disposed under the gate metal layer, and the capacitor structure is electrically connected between a source and a drain of the transistor device.
    Type: Application
    Filed: January 19, 2011
    Publication date: March 1, 2012
    Inventor: Wei-Chieh Lin
  • Patent number: 8120100
    Abstract: An overlapping trench gate semiconductor device includes a semiconductor substrate, a plurality of shallow trenches disposed on the semiconductor substrate, a first conductive layer disposed in the shallow trenches, a plurality of deep trenches respectively disposed in each shallow trench, a second conductive layer disposed in the deep trenches, a source metal layer and a gate metal layer. Each of the deep trenches extends into the semiconductor substrate under each shallow trench. The source metal layer is electrically connected to the second conductive layer, and the gate metal layer is electrically connected to the first conductive layer.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: February 21, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Jen-Hao Yeh, Guo-Liang Yang, Jia-Fu Lin
  • Publication number: 20110291183
    Abstract: A power semiconductor device having low gate input resistance and a manufacturing method thereof are provided. The power semiconductor device includes a substrate, at least a trench transistor, a conductive layer, a metal contact plug, an insulating layer, an interlayer dielectric, a gate metal layer, and a source metal layer. The metal contact plug can serve as a buried gate metal bus line, and the metal contact plug can pass under the source metal layer and keeps the area of the source metal layer complete. Accordingly, the present invention can provide a lower gate input resistance without dividing the source metal layer, so the source metal layer can have a larger and complete area for the following packaging and bonding process.
    Type: Application
    Filed: July 20, 2010
    Publication date: December 1, 2011
    Inventors: Wei-Chieh Lin, Guo-Liang Yang, Jia-Fu Lin, Shian-Hau Liao
  • Publication number: 20110278671
    Abstract: A laterally diffused metal-oxide-semiconductor device includes a substrate, a gate dielectric layer, a gate polysilicon layer, a source region, a drain region, a body region, a first drain contact plug, a source polysilicon layer, an insulating layer, and a source metal layer. The source polysilicon layer disposed on the gate dielectric layer above the drain region can serve as a field plate to enhance the breakdown voltage and to increase the drain-to-source capacitance. In addition, the first drain contact plug of the present invention can reduce the drain-to-source on-resistance and the horizontal extension length.
    Type: Application
    Filed: July 20, 2010
    Publication date: November 17, 2011
    Inventors: Wei-Chieh Lin, Ho-Tai Chen, Jia-Fu Lin, Po-Hsien Li
  • Patent number: 8049273
    Abstract: A power semiconductor device includes a backside metal layer, a substrate formed on the backside metal layer, a semiconductor layer formed on the substrate, and a frontside metal layer. The semiconductor layer includes a first trench structure including a gate oxide layer formed around a first trench with poly-Si implant, a second trench structure including a gate oxide layer formed around a second trench with poly-Si implant, a p-base region formed between the first trench structure and the second trench structure, a plurality of n+ source region formed on the p-base region and between the first trench structure and the second trench structure, a dielectric layer formed on the first trench structure, the second trench structure, and the plurality of n+ source region. The frontside metal layer is formed on the semiconductor layer and filling gaps formed between the plurality of n+ source region on the p-base region.
    Type: Grant
    Filed: February 15, 2009
    Date of Patent: November 1, 2011
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Ho-Tai Chen, Li-Cheng Lin, Jen-Hao Yeh, Hsin-Yen Chiu, Hsin-Yu Hsu, Shih-Chieh Hung
  • Publication number: 20110254050
    Abstract: An insulated gate bipolar transistor (IGBT) is provided comprising a semiconductor substrate having the following regions in sequence: (i) a first region of a first conductive type having opposing surfaces, a column region of a second conductive type within the first region extending from a first of said opposing surfaces; (ii) a drift region of the second conductive type; (iii) a second region of the first conductive type, and (iv) a third region of the second conductive type. There is provided a gate electrode disposed to form a channel between the third region and the drift region, a first electrode operatively connected to the second region and the third region, a second electrode operatively connected to the first region and the column region.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 20, 2011
    Inventors: Florin Udrea, Chih-Wei Hsu, Wei-Chieh Lin
  • Publication number: 20110215374
    Abstract: A power semiconductor device having adjustable output capacitance includes a semiconductor substrate having a first device region and a second device region defined thereon, at lest one power transistor device disposed in the first device region, a heavily doped region disposed in the semiconductor substrate of the second device region, a capacitor dielectric layer disposed on the heavily doped region, a source metal layer disposed on a top surface of the semiconductor substrate and electrically connected to the power transistor device, and a drain metal layer disposed on a bottom surface of the semiconductor substrate. The source metal layer in the second device, the capacitor dielectric layer and the heavily doped region form a snubber capacitor.
    Type: Application
    Filed: May 21, 2010
    Publication date: September 8, 2011
    Inventors: Wei-Chieh Lin, Guo-Liang Yang, Shian-Hau Liao
  • Patent number: 7952137
    Abstract: A trench semiconductor device and a method of making the same are provided. The trench semiconductor device includes a trench MOS device and a trench ESD protection device. The trench ESD protection device is electrically connected between the gate electrode and source electrode of the trench MOS device so as to provide ESD protection. The fabrication of the ESD protection device is integrated into the process of the trench MOS device, and therefore no extra mask is required to define the doped regions of the trench ESD protection device. Consequently, the trench semiconductor device is advantageous for its simplified manufacturing process and low cost.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: May 31, 2011
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Li-Cheng Lin
  • Publication number: 20110084335
    Abstract: A power semiconductor device with drain voltage protection includes a semiconductor substrate, at least a trench gate transistor device and at least a trench ESD protection device. An upper surface of the semiconductor substrate has a first trench and a second trench. The trench gate transistor device is disposed in the first trench and the semiconductor substrate. The trench ESD protection device is disposed in the second trench, and includes a first doped region, a second doped region and a third doped region. The first doped region and the third doped region are respectively electrically connected to a drain and a gate of the trench gate transistor device.
    Type: Application
    Filed: November 8, 2009
    Publication date: April 14, 2011
    Inventors: Wei-Chieh Lin, Guo-Liang Yang, Jen-Hao Yeh, Jia-Fu Lin
  • Publication number: 20110084334
    Abstract: A bilateral conduction semiconductor device and a manufacturing method thereof are provided. The bilateral conduction semiconductor device includes an epitaxial layer having a first conductive type and a first trench, a first gate conductive layer disposed on a sidewall of the first trench, a second gate conductive layer disposed opposite to the first gate conductive layer, and a doped region having the first conductive type. The doped region is disposed in the epitaxial layer between the first gate conductive layer and the second gate conductive layer, and a doped concentration of the doped region is larger than a doped concentration of the epitaxial layer.
    Type: Application
    Filed: November 10, 2009
    Publication date: April 14, 2011
    Inventors: Wei-Chieh Lin, Jen-Hao Yeh, Jia-Fu Lin, Chia-Hui Chen
  • Publication number: 20110079819
    Abstract: An IGBT with a fast reverse recovery time rectifier includes an N-type drift epitaxial layer, a gate, a gate insulating layer, a P-type doped base region, an N-type doped source region, a P-type doped contact region, and a P-type lightly doped region. The P-type doped base region is disposed in the N-type drift epitaxial layer, and the P-type doped contact region is disposed in the N-type drift epitaxial layer. The P-type lightly doped region is disposed between the P-type contact doped region and the N-type drift epitaxial layer, and is in contact with the N-type drift epitaxial layer.
    Type: Application
    Filed: November 10, 2009
    Publication date: April 7, 2011
    Inventors: Wei-Chieh Lin, Jen-Hao Yeh, Ho-Tai Chen
  • Publication number: 20110062513
    Abstract: An overlapping trench gate semiconductor device includes a semiconductor substrate, a plurality of shallow trenches disposed on the semiconductor substrate, a first conductive layer disposed in the shallow trenches, a plurality of deep trenches respectively disposed in each shallow trench, a second conductive layer disposed in the deep trenches, a source metal layer and a gate metal layer. Each of the deep trenches extends into the semiconductor substrate under each shallow trench. The source metal layer is electrically connected to the second conductive layer, and the gate metal layer is electrically connected to the first conductive layer.
    Type: Application
    Filed: November 11, 2009
    Publication date: March 17, 2011
    Inventors: Wei-Chieh Lin, Jen-Hao Yeh, Guo-Liang Yang, Jia-Fu Lin
  • Patent number: 7867854
    Abstract: Wider and narrower trenches are formed in a substrate. A first gate material layer is deposited but not fully fills the wider trench. The first gate material layer in the wider trench and above the substrate original surface is removed by isotropic or anisotropic etching back. A first dopant layer is formed in the surface layer of the substrate at the original surface and the sidewall and bottom of the wider trench by tilt ion implantation. A second gate material layer is deposited to fully fill the trenches. The gate material layer above the original surface is removed by anisotropic etching back. A second dopant layer is formed in the surface layer of the substrate at the original surface by ion implantation. The dopants are driven-in to form a base in the substrate and a bottom-lightly-doped layer surrounding the bottom of the wider trench and adjacent to the base.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: January 11, 2011
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Hsin-Yu Hsu, Guo-Liang Yang, Jen-Hao Yeh