Patents by Inventor Wei-Chun Tsai

Wei-Chun Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12053777
    Abstract: Disclosed herein is an integrated microfluidic chip for detecting cancerous cells, particularly, cholangio-cancerous cells, from a biological sample. Also disclosed herein is a method of detecting cholangio-cancerous cells from a biological sample.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: August 6, 2024
    Assignees: Academia Sinica, National Tsing Hua University
    Inventors: Shang-Cheng Hung, Yen-Chun Ko, Cheng-Fang Tsai, Gwo-Bin Lee, Wei-Chun Tsai
  • Patent number: 11549946
    Abstract: The present disclosure provides a method for detecting cholangiocarcinoma cells. The capture rate of the cholangiocarcinoma cells of the present disclosure is higher than 70%, and a plurality of octasaccharides with high affinity and specificity can be modified on the surface of magnetic beads to capture and analyze cholangiocarcinoma cells under test, wherein the cholangiocarcinoma cells can be circulating tumor cells in cholangiocarcinoma.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: January 10, 2023
    Assignees: NATIONAL TSING HUA UNIVERSITY, ACADEMIA SINICA
    Inventors: Gwo Bin Lee, Shang-Cheng Hung, Wei-Chun Tsai
  • Patent number: 11450661
    Abstract: A first Fin Field-Effect Transistor (FinFET) and a second FinFET are adjacent to each other. Each of the first FinFET and the second FinFET includes a semiconductor fin, a gate dielectric on sidewalls and a top surface of the semiconductor fin, and a gate electrode over the gate dielectric. The semiconductor fin of the first FinFET and the semiconductor fin of the second FinFET are aligned to a straight line. An isolation region is aligned to the straight line, wherein the isolation region includes a portion at a same level as the semiconductor fins of the first FinFET and the second FinFET. A continuous straight semiconductor strip is overlapped by the semiconductor fins of the first FinFET and the second FinFET. A Shallow Trench Isolation (STI) region is on a side of, and contacts, the semiconductor strip. The isolation region and the first STI region form a distinguishable interface.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yu Hsu, Yi-Tang Lin, Clement Hsingjen Wann, Chih-Sheng Chang, Wei-Chun Tsai, Jyh-Cherng Sheu, Chi-Yuan Shih
  • Patent number: 10943995
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: March 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20210046479
    Abstract: Disclosed herein is an integrated microfluidic chip for detecting cancerous cells, particularly, cholangio-cancerous cells, from a biological sample. Also disclosed herein is a method of detecting cholangio-cancerous cells from a biological sample.
    Type: Application
    Filed: February 27, 2019
    Publication date: February 18, 2021
    Applicants: Academia Sinica, National Tsing Hua University
    Inventors: Shang-Cheng HUNG, Yen-Chun KO, Cheng-Fang TSAI, Gwo-Bin LEE, Wei-Chun TSAI
  • Publication number: 20200355692
    Abstract: The present disclosure provides a method for detecting cholangiocarcinoma cells. The capture rate of the cholangiocarcinoma cells of the present disclosure is higher than 70%, and a plurality of octasaccharides with high affinity and specificity can be modified on the surface of magnetic beads to capture and analyze cholangiocarcinoma cells under test, wherein the cholangiocarcinoma cells can be circulating tumor cells in cholangiocarcinoma.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 12, 2020
    Inventors: Gwo Bin Lee, Shang-Cheng Hung, Wei-Chun Tsai
  • Patent number: 10535573
    Abstract: Disclosed herein is a method for forming a test key system for characterizing wafer processing states, the method comprising forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer and forming a test key on the substrate of a wafer and in the scribe line of the wafer. Forming the test key comprises forming at least one test key group having a plurality of test key series, each of the plurality of test key series having a plurality of test pads, each one of the plurality of test key series having a first physical characteristic different from the first physical characteristic of other test key series the at least one first test key group.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20190237370
    Abstract: Disclosed herein is a method for forming a test key system for characterizing wafer processing states, the method comprising forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer and forming a test key on the substrate of a wafer and in the scribe line of the wafer. Forming the test key comprises forming at least one test key group having a plurality of test key series, each of the plurality of test key series having a plurality of test pads, each one of the plurality of test key series having a first physical characteristic different from the first physical characteristic of other test key series the at least one first test key group.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20190123179
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Application
    Filed: December 11, 2018
    Publication date: April 25, 2019
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Patent number: 10269666
    Abstract: Disclosed herein is a method for forming a test key system for characterizing wafer processing states, the method comprising forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer and forming a test key on the substrate of a wafer and in the scribe line of the wafer. Forming the test key comprises forming at least one test key group having a plurality of test key series, each of the plurality of test key series having a plurality of test pads, each one of the plurality of test key series having a first physical characteristic different from the first physical characteristic of other test key series the at least one first test key group.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Patent number: 10164070
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20180308955
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20180247935
    Abstract: A first Fin Field-Effect Transistor (FinFET) and a second FinFET are adjacent to each other. Each of the first FinFET and the second FinFET includes a semiconductor fin, a gate dielectric on sidewalls and a top surface of the semiconductor fin, and a gate electrode over the gate dielectric. The semiconductor fin of the first FinFET and the semiconductor fin of the second FinFET are aligned to a straight line. An isolation region is aligned to the straight line, wherein the isolation region includes a portion at a same level as the semiconductor fins of the first FinFET and the second FinFET. A continuous straight semiconductor strip is overlapped by the semiconductor fins of the first FinFET and the second FinFET. A Shallow Trench Isolation (STI) region is on a side of, and contacts, the semiconductor strip. The isolation region and the first STI region form a distinguishable interface.
    Type: Application
    Filed: April 20, 2018
    Publication date: August 30, 2018
    Inventors: Chih-Yu Hsu, Yi-Tang Lin, Clement Hsingjen Wann, Chih-Sheng Chang, Wei-Chun Tsai, Jyh-Cherng Sheu, Chi-Yuan Shih
  • Patent number: 10032889
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: July 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Patent number: 9953975
    Abstract: A first Fin Field-Effect Transistor (FinFET) and a second FinFET are adjacent to each other. Each of the first FinFET and the second FinFET includes a semiconductor fin, a gate dielectric on sidewalls and a top surface of the semiconductor fin, and a gate electrode over the gate dielectric. The semiconductor fin of the first FinFET and the semiconductor fin of the second FinFET are aligned to a straight line. An isolation region is aligned to the straight line, wherein the isolation region includes a portion at a same level as the semiconductor fins of the first FinFET and the second FinFET. A continuous straight semiconductor strip is overlapped by the semiconductor fins of the first FinFET and the second FinFET. A Shallow Trench Isolation (STI) region is on a side of, and contacts, the semiconductor strip. The isolation region and the first STI region form a distinguishable interface.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: April 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Hsu, Yi-Tang Lin, Clement Hsinjen Wann, Chih-Sheng Chang, Wei-Chun Tsai, Jyh-Cherng Sheu, Chi-Yuan Shih
  • Patent number: 9627280
    Abstract: A method includes probing at least one semiconductor fin using a four-point probe head, with four probe pins of the four-point probe head contacting the at least one semiconductor fin. A resistance of the at least one semiconductor fin is calculated. A carrier concentration of the semiconductor fin is calculated from the resistance.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: April 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Yasutoshi Okuno, Ling-Yen Yeh, Chi-Yuan Shih, Yuan-Fu Shao, Wei-Chun Tsai
  • Publication number: 20160372390
    Abstract: Disclosed herein is a method for forming a test key system for characterizing wafer processing states, the method comprising forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer and forming a test key on the substrate of a wafer and in the scribe line of the wafer. Forming the test key comprises forming at least one test key group having a plurality of test key series, each of the plurality of test key series having a plurality of test pads, each one of the plurality of test key series having a first physical characteristic different from the first physical characteristic of other test key series the at least one first test key group.
    Type: Application
    Filed: August 29, 2016
    Publication date: December 22, 2016
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20160343832
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Application
    Filed: August 4, 2016
    Publication date: November 24, 2016
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20160268174
    Abstract: A method includes probing at least one semiconductor fin using a four-point probe head, with four probe pins of the four-point probe head contacting the at least one semiconductor fin. A resistance of the at least one semiconductor fin is calculated. A carrier concentration of the semiconductor fin is calculated from the resistance.
    Type: Application
    Filed: May 23, 2016
    Publication date: September 15, 2016
    Inventors: Clement Hsingjen Wann, Yasutoshi Okuno, Ling-Yen Yeh, Chi-Yuan Shih, Yuan-Fu Shao, Wei-Chun Tsai
  • Patent number: 9431288
    Abstract: Disclosed herein is a method for forming a test key system for characterizing wafer processing states, the method comprising forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer and forming a test key on the substrate of a wafer and in the scribe line of the wafer. Forming the test key comprises forming at least one test key group having a plurality of test key series, each of the plurality of test key series having a plurality of test pads, each one of the plurality of test key series having a first physical characteristic different from the first physical characteristic of other test key series the at least one first test key group.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: August 30, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai