Patents by Inventor Weidong Tian

Weidong Tian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142175
    Abstract: Disclosed are an unblocking apparatus for a furnace discharging pipe and a use method. The unblocking apparatus includes a rail, a rail car that may move along the rail, an unblocking drive mechanism arranged on the rail car, a heat-unblocking component, a cold-unblocking component, and a material receiving component that is used to receive a blocking material in the discharging pipe, and a drive end of the unblocking drive mechanism is detachably connected with one end of the heat-unblocking component and the cold-unblocking component respectively. The present application effectively handles different blockage situations of the furnace discharging pipe by connecting the unblocking drive mechanism with an unblocking rod capable of heat-unblocking and a drilling rod capable of cold-unblocking, thereby two modes of heat-unblocking and cold-unblocking are performed on the furnace discharging pipe; and the discharging pipe may be unblocked by a remote operation.
    Type: Application
    Filed: October 23, 2023
    Publication date: May 2, 2024
    Applicants: China Nuclear Sichuan Environmental Protection Engineering Co., Ltd., China Building Materials Academy, China Nuclear Power Engineering Co., Ltd.
    Inventors: Weidong XU, Yu CHANG, Yongchang ZHU, Hong DUAN, Chunyu TIAN, Wei WU, Debo YANG, Qingbin ZHAO, Shuaizhen WU, Lin WANG, Zhu CUI, Heyi GUO, Maosong FAN, Yuancheng SUN, Jie MEI, Xiaoli AN, Yongxiang ZHAO, Qinda LIU
  • Patent number: 11942715
    Abstract: A terminal position assurance device and a corresponding connector assembly are disclosed. The terminal position assurance device includes a main body having a main board, an upper board, and a lower board. The upper board and the lower board are arranged perpendicularly to the main board and are located on the same side of the main board. The upper board and the lower board have distal ends away from the main board. The terminal position assurance device further includes an extension arm extending from the distal end of the upper board in a direction substantially perpendicular to the main board and a stopper extending from an outer edge of the extension arm and thus going beyond the main body.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: March 26, 2024
    Assignee: Aptiv Technologies AG
    Inventors: Xiaoxian Tian, Haifei Guan, Weidong Zhang
  • Patent number: 10679935
    Abstract: A method and structure suitable for, e.g., improving high voltage breakdown reliability of a microelectronic device such as a capacitor usable for galvanic isolation of two circuits. A first dielectric layer has a first dielectric constant located over a semiconductor substrate. A metal structure located over the first dielectric layer has a side surface. A second dielectric layer having a second different dielectric constant is located adjacent the metal structure. A dielectric structure located between the side surface of the metal structure and the second dielectric layer has the first dielectric constant.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: June 9, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. West, Byron Lovell Williams, David Leonard Larkin, Weidong Tian
  • Publication number: 20200013713
    Abstract: A method and structure suitable for, e.g., improving high voltage breakdown reliability of a microelectronic device such as a capacitor usable for galvanic isolation of two circuits. A first dielectric layer has a first dielectric constant located over a semiconductor substrate. A metal structure located over the first dielectric layer has a side surface. A second dielectric layer having a second different dielectric constant is located adjacent the metal structure. A dielectric structure located between the side surface of the metal structure and the second dielectric layer has the first dielectric constant.
    Type: Application
    Filed: September 16, 2019
    Publication date: January 9, 2020
    Inventors: Jeffrey A. West, Byron Lovell Williams, David Leonard Larkin, Weidong Tian
  • Patent number: 10418320
    Abstract: A method and structure suitable for, e.g., improving high voltage breakdown reliability of a microelectronic device such as a capacitor usable for galvanic isolation of two circuits. A metal plate having a top surface and a side surface is located over a first dielectric layer. A second dielectric layer of a second different material is located over the first metal plate. A dielectric structure of the first material is located over the side surface of the metal plate and over the surface of the first dielectric layer.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: September 17, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. West, Byron Lovell Williams, David Leonard Larkin, Weidong Tian
  • Patent number: 10211303
    Abstract: An integrated circuit contains a flash cell in which the top gate of the sense transistor is a metal sense gate over the floating gate. The source/drain regions of the sense transistor extend under the floating gate so that the source region is separated from the drain region by a sense channel length less than 200 nanometers. The floating gate is at least 400 nanometers wide, so the source/drain regions of the sense transistor extend under the floating gate at least 100 nanometers on each side. The integrated circuit is formed by forming the sense transistor source and drain regions before forming the floating gate.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: February 19, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ning Tan, Weidong Tian
  • Publication number: 20190006276
    Abstract: A method and structure suitable for, e.g., improving high voltage breakdown reliability of a microelectronic device such as a capacitor usable for galvanic isolation of two circuits. A metal plate having a top surface and a side surface is located over a first dielectric layer. A second dielectric layer of a second different material is located over the first metal plate. A dielectric structure of the first material is located over the side surface of the metal plate and over the surface of the first dielectric layer.
    Type: Application
    Filed: September 11, 2018
    Publication date: January 3, 2019
    Inventors: Jeffrey A. West, Byron Lovell Williams, David Leonard Larkin, Weidong Tian
  • Patent number: 10109574
    Abstract: A method and structure for improving high voltage breakdown reliability of a microelectronic device, e.g., a galvanic digital isolator, involves providing an abatement structure around metal plate corners of a high voltage isolation capacitor to ameliorate the effects of an electric field formed thereat during operation of the device due to dielectric discontinuity.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: October 23, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey A. West, Byron Lovell Williams, David Leonard Larkin, Weidong Tian
  • Publication number: 20180286802
    Abstract: A method and structure for improving high voltage breakdown reliability of a microelectronic device, e.g., a galvanic digital isolator, involves providing an abatement structure around metal plate corners of a high voltage isolation capacitor to ameliorate the effects of an electric field formed thereat during operation of the device due to dielectric discontinuity.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 4, 2018
    Inventors: Jeffrey A. West, Byron Lovell Williams, David Leonard Larkin, Weidong Tian
  • Patent number: 9818740
    Abstract: An integrated circuit includes an NMOS transistor, a PMOS transistor and a vertical bipolar transistor. The vertical bipolar transistor has an intrinsic base with a band barrier at least 25 meV high at a surface boundary of the intrinsic base, except at an emitter-base junction with an emitter, and except at a base-collector junction with a collector. The intrinsic base may be laterally surrounded by an extrinsic base with a higher dopant density than the intrinsic base, wherein a higher dopant density provides the band barrier at lateral surfaces of the intrinsic base. A gate may be disposed on a gate dielectric layer over a top surface boundary of the intrinsic base adjacent to the emitter. The gate is configured to accumulate the intrinsic base immediately under the gate dielectric layer, providing the band barrier at the top surface boundary of the intrinsic base.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: November 14, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Weidong Tian, YuGuo Wang, Tathagata Chatterjee, Rajni J. Aggarwal
  • Publication number: 20170141101
    Abstract: An integrated circuit includes an NMOS transistor, a PMOS transistor and a vertical bipolar transistor. The vertical bipolar transistor has an intrinsic base with a band barrier at least 25 meV high at a surface boundary of the intrinsic base, except at an emitter-base junction with an emitter, and except at a base-collector junction with a collector. The intrinsic base may be laterally surrounded by an extrinsic base with a higher dopant density than the intrinsic base, wherein a higher dopant density provides the band barrier at lateral surfaces of the intrinsic base. A gate may be disposed on a gate dielectric layer over a top surface boundary of the intrinsic base adjacent to the emitter. The gate is configured to accumulate the intrinsic base immediately under the gate dielectric layer, providing the band barrier at the top surface boundary of the intrinsic base.
    Type: Application
    Filed: December 5, 2016
    Publication date: May 18, 2017
    Inventors: Weidong Tian, YuGuo Wang, Tathagata Chatterjee, Rajni J. Aggarwal
  • Publication number: 20170040332
    Abstract: An integrated circuit contains a flash cell in which the top gate of the sense transistor is a metal sense gate over the floating gate. The source/drain regions of the sense transistor extend under the floating gate so that the source region is separated from the drain region by a sense channel length less than 200 nanometers. The floating gate is at least 400 nanometers wide, so the source/drain regions of the sense transistor extend under the floating gate at least 100 nanometers on each side. The integrated circuit is formed by forming the sense transistor source and drain regions before forming the floating gate.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 9, 2017
    Inventors: Ning TAN, Weidong TIAN
  • Patent number: 9548298
    Abstract: An integrated circuit includes an NMOS transistor, a PMOS transistor and a vertical bipolar transistor. The vertical bipolar transistor has an intrinsic base with a band barrier at least 25 meV high at a surface boundary of the intrinsic base, except at an emitter-base junction with an emitter, and except at a base-collector junction with a collector. The intrinsic base may be laterally surrounded by an extrinsic base with a higher dopant density than the intrinsic base, wherein a higher dopant density provides the band barrier at lateral surfaces of the intrinsic base. A gate may be disposed on a gate dielectric layer over a top surface boundary of the intrinsic base adjacent to the emitter. The gate is configured to accumulate the intrinsic base immediately under the gate dielectric layer, providing the band barrier at the top surface boundary of the intrinsic base.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: January 17, 2017
    Assignee: TEXAS INSTUMENTS INCORPORATED
    Inventors: Weidong Tian, YuGuo Wang, Tathagata Chatterjee, Rajni J. Aggarwal
  • Patent number: 9431253
    Abstract: An integrated circuit contains a flash cell in which the top gate of the sense transistor is a metal sense gate over the floating gate. The source/drain regions of the sense transistor extend under the floating gate so that the source region is separated from the drain region by a sense channel length less than 200 nanometers. The floating gate is at least 400 nanometers wide, so the source/drain regions of the sense transistor extend under the floating gate at least 100 nanometers on each side. The integrated circuit is formed by forming the sense transistor source and drain regions before forming the floating gate.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: August 30, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ning Tan, Weidong Tian
  • Publication number: 20160218062
    Abstract: An integrated circuit with copper damascene interconnects includes a thin film resistor. Copper damascene metal lines are formed in a first ILD layer. A dielectric layer including an etch stop layer is formed on the first ILD layer and metal lines. Resistor heads of refractory metal are formed in the dielectric layer so that edges of the resistor heads are substantially coplanar with the adjacent dielectric layer. A thin film resistor layer is formed on the dielectric layer, extending onto the resistor heads. A second ILD layer is formed over the dielectric layer and the thin film resistor layer. Copper damascene vias are formed in the second ILD layer, making contact to the metal lines in the first ILD layer. Connections to the resistor heads are provided by the metal lines and/or the vias.
    Type: Application
    Filed: January 23, 2015
    Publication date: July 28, 2016
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rajni J. Aggarwal, John P. Campbell, Kaiping Liu, Weidong Tian
  • Patent number: 8679929
    Abstract: A method of fabricating a one-time programmable (OTP) memory cell with improved read current in one of its programmed states, and a memory cell so fabricated. The OTP memory cell is constructed with trench isolation structures on its sides. After trench etch, and prior to filling the isolation trenches with dielectric material, a fluorine implant is performed into the trench surfaces. The implant may be normal to the device surface or at an angle from the normal. Completion of the cell transistor to form a floating-gate metal-oxide-semiconductor (MOS) transistor is then carried out. Improved on-state current (Ion) results from the fluorine implant.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: March 25, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen “Robert” Pan, Allan T. Mitchell, Weidong Tian
  • Patent number: 8664706
    Abstract: A method of fabricating a one-time programmable (OTP) memory cell with improved read current in one of its programmed states, and a memory cell so fabricated. The OTP memory cell is constructed with trench isolation structures on its sides. After trench etch, and prior to filling the isolation trenches with dielectric material, a fluorine implant is performed into the trench surfaces. The implant may be normal to the device surface or at an angle from the normal. Completion of the cell transistor to form a floating-gate metal-oxide-semiconductor (MOS) transistor is then carried out. Improved on-state current (Ion) results from the fluorine implant.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: March 4, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen “Robert” Pan, Allan T. Mitchell, Weidong Tian
  • Patent number: 8609501
    Abstract: A method of fabricating an integrated circuit including bipolar transistors that reduces the effects of transistor performance degradation and transistor mismatch caused by charging during plasma etch, and the integrated circuit so formed. A fluorine implant is performed at those locations at which isolation dielectric structures between base and emitter are to be formed, prior to formation of the isolation dielectric. The isolation dielectric structures may be formed by either shallow trench isolation, in which the fluorine implant is performed after trench etch, or LOCOS oxidation, in which the fluorine implant is performed prior to thermal oxidation. The fluorine implant may be normal to the device surface or at an angle from the normal. Completion of the integrated circuit is then carried out, including the use of relatively thick copper metallization requiring plasma etch.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: December 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Weidong Tian, Ming-Yeh Chuang, Rajni J. Aggarwal
  • Publication number: 20130256773
    Abstract: In an embodiment of the invention, a method of fabricating a floating-gate PMOSFET (p-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves at the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.
    Type: Application
    Filed: May 21, 2013
    Publication date: October 3, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Allan T. Mitchell, Weidong Tian
  • Patent number: 8546222
    Abstract: In an embodiment of the invention, a method of fabricating a floating-gate PMOSFET (p-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves at the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: October 1, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Allan T. Mitchell, Weidong Tian