Patents by Inventor Wei-Han Lai

Wei-Han Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11295961
    Abstract: A method of manufacturing a semiconductor device is disclosed herein. The method includes forming a first layer of a first planarizing material over a patterned surface of a substrate, forming a second layer of a second planarizing material over the first planarizing layer, crosslinking a portion of the first planarizing material and a portion of the second planarizing material, and removing a portion of the second planarizing material that is not crosslinked. In an embodiment, the method further includes forming a third layer of a third planarizing material over the second planarizing material after removing the portion of the second planarizing material that is not crosslinked. The third planarizing material can include a bottom anti-reflective coating or a spin-on carbon, and an acid or an acid generator. The first planarizing material can include a spin-on carbon, and an acid, a thermal acid generator or a photoacid generator.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: April 5, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Hao Chen, Wei-Han Lai, Ching-Yu Chang, Chin-Hsiang Lin
  • Patent number: 11269256
    Abstract: A method includes providing a layered structure on a substrate, the layered structure including a bottom layer formed over the substrate, a hard mask layer formed over the bottom layer, a material layer formed over the hard mask layer, and a photoresist layer formed over the material layer, exposing the photoresist layer to a radiation source, developing the photoresist layer, where the developing removes portions of the photoresist layer and the material layer in a single step without substantially removing portions of the hard mask layer, and etching the hard mask layer using the photoresist layer as an etch mask. The material layer may include acidic moieties and/or acid-generating molecules. The material layer may also include photo-sensitive moieties and crosslinking agents.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: March 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: An-Ren Zi, Wei-Han Lai, Ching-Yu Chang
  • Publication number: 20220037150
    Abstract: A method of manufacturing a semiconductor device includes forming a spin on carbon layer comprising a spin on carbon composition over a semiconductor substrate. The spin on carbon layer is first heated at a first temperature to partially crosslink the spin on carbon layer. The spin on carbon layer is second heated at a second temperature to further crosslink the spin on carbon layer. An overlayer is formed over the spin on carbon layer. The second temperature is higher than the first temperature.
    Type: Application
    Filed: August 3, 2020
    Publication date: February 3, 2022
    Inventors: Jing Hong HUANG, Ching-Yu CHANG, Wei-Han LAI
  • Publication number: 20210397089
    Abstract: Method of forming pattern in photoresist layer includes forming photoresist layer over substrate, selectively exposing photoresist layer to actinic radiation forming latent pattern. Latent pattern is developed by applying developer to form pattern. Photoresist layer includes photoresist composition including polymer: A1, A2, L are direct bond, C4-C30 aromatic, C4-C30 alkyl, C4-C30 cycloalkyl, C4-C30 hydroxylalkyl, C4-C30 alkoxy, C4-C30 alkoxyl alkyl, C4-C30 acetyl, C4-C30 acetylalkyl, C4-C30 alkyl carboxyl, C4-C30 cycloalkyl carboxyl, C4-C30 hydrocarbon ring, C4-C30 heterocyclic, —COO—, A1 and A2 are not both direct bonds, and are unsubstituted or substituted with a halogen, carbonyl, or hydroxyl; A3 is C6-C14 aromatic, wherein A3 is unsubstituted or substituted with halogen, carbonyl, or hydroxyl; R1 is acid labile group; Ra, Rb are H or C1-C3 alkyl; Rf is direct bond or C1-C5 fluorocarbon; PAG is photoacid generator; 0?x/(x+y+z)?1, 0?y/(x+y+z)?1, and 0?z/(x+y+z)?1.
    Type: Application
    Filed: January 12, 2021
    Publication date: December 23, 2021
    Inventors: Li-Po YANG, Wei-Han LAI, Ching-Yu CHANG
  • Publication number: 20210389674
    Abstract: The present disclosure provides resist rinse solutions and corresponding lithography techniques that achieve high pattern structural integrity for advanced technology nodes. An example lithography method includes forming a resist layer over a workpiece, exposing the resist layer to radiation, developing the exposed resist layer using a developer that removes an unexposed portion of the exposed resist layer, thereby forming a patterned resist layer, and rinsing the patterned resist layer using a rinse solution. The developer is an organic solution, and the rinse solution includes water.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Inventors: Chien-Wei Wang, Wei-Han Lai, Ching-Yu Chang
  • Patent number: 11143963
    Abstract: The present disclosure provides NTD developers and corresponding lithography techniques that can overcome resolution, line edge roughness (LER), and sensitivity (RLS) tradeoff barriers particular to extreme ultraviolet (EUV) technologies, thereby achieving high patterning fidelity for advanced technology nodes. An exemplary lithography method includes forming a negative tone resist layer over a workpiece; exposing the negative tone resist layer to EUV radiation; and removing an unexposed portion of the negative tone resist layer in a negative tone developer, thereby forming a patterned negative tone resist layer. The negative tone developer includes an organic solvent having a log P value greater than 1.82. The organic solvent is an ester acetate derivative represented by R1COOR2. R1 and R2 are hydrocarbon chains having four or less carbon atoms. In some implementations, R1, R2, or both R1 and R2 are propyl functional groups, such as n-propyl, isopropyl, or 2-methylpropyl.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: October 12, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Yu Liu, Wei-Han Lai, Tzu-Yang Lin, Ming-Hui Weng, Ching-Yu Chang, Chin-Hsiang Lin
  • Publication number: 20210311388
    Abstract: Manufacturing semiconductor device includes forming photoresist layer. Photoresist layer is selectively exposed to actinic radiation and developed to form pattern. Photoresist composition includes: iodine-containing sensitizer, photoactive compound, polymer.
    Type: Application
    Filed: February 5, 2021
    Publication date: October 7, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Han LAI, Li-Po YANG, Shang-Wern CHANG, Ching-Yu CHANG, Tzu-Yang LIN, Chin-Hsiang LIN
  • Publication number: 20210271164
    Abstract: Manufacturing method includes forming photoresist layer including photoresist composition over substrate. Photoresist composition includes: photoactive compound, polymer, crosslinker. The polymer structure A1, A2, A3 independently C1-C30 aryl, alkyl, cycloalkyl, hydroxylalkyl, alkoxy, alkoxyl alkyl, acetyl, acetylalkyl, carboxyl, alky carboxyl, cycloalkyl carboxyl, hydrocarbon ring, heterocyclic, chain, ring, 3-D structure; R1 is C4-C15 chain, cyclic, 3-D structure alkyl, cycloalkyl, hydroxylalkyl, alkoxy, or alkoxyl alkyl; proportion of x, y, and z in polymer is 0?x/(x+y+z)?1, 0?y/(x+y+z)?1, and 0?z/(x+y+z)?1, x, y, and z all not 0 for same polymer.
    Type: Application
    Filed: February 4, 2021
    Publication date: September 2, 2021
    Inventors: Yen-Hao CHEN, Wei-Han LAI, Ching-Yu CHANG
  • Patent number: 11106138
    Abstract: The present disclosure provides resist rinse solutions and corresponding lithography techniques that achieve high pattern structural integrity for advanced technology nodes. An example lithography method includes forming a resist layer over a workpiece, exposing the resist layer to radiation, developing the exposed resist layer using a developer that removes an unexposed portion of the exposed resist layer, thereby forming a patterned resist layer, and rinsing the patterned resist layer using a rinse solution. The developer is an organic solution, and the rinse solution includes water.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: August 31, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Wei Wang, Wei-Han Lai, Ching-Yu Chang
  • Patent number: 11073763
    Abstract: Shrinkage and mass losses are reduced in photoresist exposure and post exposure baking by utilizing a small group which will decompose. Alternatively a bulky group which will not decompose or a combination of the small group which will decompose along with the bulky group which will not decompose can be utilized. Additionally, polar functional groups may be utilized in order to reduce the diffusion of reactants through the photoresist.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: July 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Han Lai, Ching-Yu Chang, Chen-Hau Wu
  • Publication number: 20210198468
    Abstract: Method of manufacturing semiconductor device includes forming photoresist layer over substrate. Photoresist layer is selectively exposed to radiation, and selectively exposed photoresist layer developed. Photoresist composition includes photoactive compound, crosslinker, copolymer.
    Type: Application
    Filed: November 13, 2020
    Publication date: July 1, 2021
    Inventors: Yen-Hao CHEN, Wei-Han LAI, Ching-Yu CHANG
  • Publication number: 20210159087
    Abstract: A method of manufacturing a semiconductor device is disclosed herein. The method includes forming a first layer of a first planarizing material over a patterned surface of a substrate, forming a second layer of a second planarizing material over the first planarizing layer, crosslinking a portion of the first planarizing material and a portion of the second planarizing material, and removing a portion of the second planarizing material that is not crosslinked. In an embodiment, the method further includes forming a third layer of a third planarizing material over the second planarizing material after removing the portion of the second planarizing material that is not crosslinked. The third planarizing material can include a bottom anti-reflective coating or a spin-on carbon, and an acid or an acid generator. The first planarizing material can include a spin-on carbon, and an acid, a thermal acid generator or a photoacid generator.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Yen-Hao CHEN, Wei-Han LAI, Ching-Yu CHANG, Chin-Hsiang LIN
  • Patent number: 11003076
    Abstract: Resist materials having enhanced sensitivity to radiation are disclosed herein, along with methods for lithography patterning that implement such resist materials. An exemplary resist material includes a polymer, a sensitizer, and a photo-acid generator (PAG). The sensitizer is configured to generate a secondary radiation in response to the radiation. The PAG is configured to generate acid in response to the radiation and the secondary radiation. The PAG includes a sulfonium cation having a first phenyl ring and a second phenyl ring, where the first phenyl ring is chemically bonded to the second phenyl ring.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: May 11, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Hao Chen, Wei-Han Lai, Chien-Wei Wang, Chin-Hsiang Lin
  • Publication number: 20210132497
    Abstract: A negative tone photoresist and method for developing the negative tone photoresist is disclosed. For example, the negative tone photoresist includes a solvent, a dissolution inhibitor, and a polymer. The polymer includes a hydroxyl group. The polymer may be greater than 40 weight per cent of a total weight of the negative tone photoresist.
    Type: Application
    Filed: March 5, 2020
    Publication date: May 6, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Li-Po YANG, Wei-Han LAI, Ching-Yu CHANG
  • Publication number: 20200333710
    Abstract: A method includes providing a layered structure on a substrate, the layered structure including a bottom layer formed over the substrate, a hard mask layer formed over the bottom layer, a material layer formed over the hard mask layer, and a photoresist layer formed over the material layer, exposing the photoresist layer to a radiation source, developing the photoresist layer, where the developing removes portions of the photoresist layer and the material layer in a single step without substantially removing portions of the hard mask layer, and etching the hard mask layer using the photoresist layer as an etch mask. The material layer may include acidic moieties and/or acid-generating molecules. The material layer may also include photo-sensitive moieties and crosslinking agents.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 22, 2020
    Inventors: An-Ren Zi, Wei-Han Lai, Ching-Yu Chang
  • Patent number: 10802402
    Abstract: Provided is a material composition and method for substrate modification. A substrate is patterned to include a plurality of features. The plurality of features includes a first subset of features having one or more substantially inert surfaces. In various embodiments, a priming material is deposited over the substrate, over the plurality of features, and over the one or more substantially inert surfaces. By way of example, the deposited priming material bonds at least to the one or more substantially inert surfaces. Additionally, the deposited priming material provides a modified substrate surface. After depositing the priming material, a layer is spin-coated over the modified substrate surface, where the spin-coated layer is substantially planar.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: October 13, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Han Lai, Chien-Wei Wang, Ching-Yu Chang, Chin-Hsiang Lin
  • Patent number: 10698317
    Abstract: A method includes providing a layered structure on a substrate, the layered structure including a bottom layer formed over the substrate, a hard mask layer formed over the bottom layer, a material layer formed over the hard mask layer, and a photoresist layer formed over the material layer, exposing the photoresist layer to a radiation source, developing the photoresist layer, where the developing removes portions of the photoresist layer and the material layer in a single step without substantially removing portions of the hard mask layer, and etching the hard mask layer using the photoresist layer as an etch mask. The material layer may include acidic moieties and/or acid-generating molecules. The material layer may also include photo-sensitive moieties and crosslinking agents.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: June 30, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: An-Ren Zi, Wei-Han Lai, Ching-Yu Chang
  • Publication number: 20200133125
    Abstract: Shrinkage and mass losses are reduced in photoresist exposure and post exposure baking by utilizing a small group which will decompose. Alternatively a bulky group which will not decompose or a combination of the small group which will decompose along with the bulky group which will not decompose can be utilized. Additionally, polar functional groups may be utilized in order to reduce the diffusion of reactants through the photoresist.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Wei-Han Lai, Ching-Yu Chang, Chen-Hau Wu
  • Publication number: 20200124971
    Abstract: The present disclosure provides NTD developers and corresponding lithography techniques that can overcome resolution, line edge roughness (LER), and sensitivity (RLS) tradeoff barriers particular to extreme ultraviolet (EUV) technologies, thereby achieving high patterning fidelity for advanced technology nodes. An exemplary lithography method includes forming a negative tone resist layer over a workpiece; exposing the negative tone resist layer to EUV radiation; and removing an unexposed portion of the negative tone resist layer in a negative tone developer, thereby forming a patterned negative tone resist layer. The negative tone developer includes an organic solvent having a log P value greater than 1.82. The organic solvent is an ester acetate derivative represented by R1COOR2. R1 and R2 are hydrocarbon chains having four or less carbon atoms. In some implementations, R1, R2, or both R1 and R2 are propyl functional groups, such as n-propyl, isopropyl, or 2-methylpropyl.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Chen-Yu Liu, Wei-Han Lai, Tzu-Yang Lin, Ming-Hui Weng, Ching-Yu Chang, Chin-Hsiang Lin
  • Publication number: 20200124964
    Abstract: A method includes forming a photoresist layer over a substrate, wherein the photoresist layer includes a polymer, a sensitizer, and a photo-acid generator (PAG), wherein the sensitizer includes a resonance ring that includes nitrogen and at least one double bond. The method further includes performing an exposing process to the photoresist layer. The method further includes developing the photoresist layer, thereby forming a patterned photoresist layer.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Wei-Han Lai, Chin-Hsiang Lin, Chien-Wei Wang