Patents by Inventor Wei-Hsiang Ma
Wei-Hsiang Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230336177Abstract: A circuit includes an input circuit, a level shifter circuit, an output circuit, and a first and a second feedback circuit. The input circuit is coupled to a first voltage supply, and configured to receive a first input signal, and to generate at least a second input signal. The level shifter circuit is coupled to a second voltage supply, and configured to generate at least a first and second signal responsive to at least the enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the second voltage supply, and configured to generate at least an output signal, a first and second feedback signal responsive to the first signal. The first and second feedback circuit are configured to receive the enable signal, and the inverted enable signal, and the corresponding first and second feedback signal.Type: ApplicationFiled: June 12, 2023Publication date: October 19, 2023Inventors: Yu-Lun OU, Ji-Yung LIN, Yung-Chen CHIEN, Ruei-Wun SUN, Wei-Hsiang MA, Jerry Chang Jui KAO, Shang-Chih HSIEH, Lee-Chung LU
-
Patent number: 11757435Abstract: A circuit includes first and second power nodes having differing first and second voltage levels, and a reference node having a reference voltage level. A master latch outputs a first data bit based on a received data bit; a slave latch includes a first inverter that outputs a second data bit based on the first data bit and a second inverter that outputs an output data bit based on a selected one of the first data bit or a third data bit; a level shifter outputs the third data bit based on a fourth data bit; and a retention latch outputs the fourth data bit based on the second data bit. The first and second inverters and the level shifter are coupled between the first power node and the reference node, and the retention latch includes a plurality of transistors coupled between the second power node and the reference node.Type: GrantFiled: July 28, 2022Date of Patent: September 12, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kai-Chi Huang, Yung-Chen Chien, Chi-Lin Liu, Wei-Hsiang Ma, Jerry Chang Jui Kao, Shang-Chih Hsieh, Lee-Chung Lu
-
Patent number: 11755798Abstract: A logic circuit including first and second inverters, first and second NAND circuits, a transmission gate, and a transmission-gate-substitute (TGS) circuit, and wherein: for each of the first and second NAND circuits, a first input is configured to receive corresponding first and second data signals, and a second input is configured to receive an enable signal; the first inverter is configured to receive an output of the first NAND circuit; the transmission gate and the TGS circuit are arranged as a combination circuit which is configured to receive an output of the second NAND circuit as a data input, and outputs of the first inverter and the second NAND circuit as control inputs; the second inverter is configured to receive an output of the combination circuit; and an output of the second inverter represents one of an enable XOR (EXOR) function or an enable XNR (EXNR) function.Type: GrantFiled: June 7, 2021Date of Patent: September 12, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chi-Lin Liu, Jerry Chang-Jui Kao, Wei-Hsiang Ma, Lee-Chung Lu, Fong-Yuan Chang, Sheng-Hsiung Chen, Shang-Chih Hsieh
-
Patent number: 11694012Abstract: A multiplexer circuit includes first and second fins each extending in an X-axis direction. First, second, third and fourth gates extend in a Y-axis direction perpendicular to the X-axis direction and contact the first and second fins. The first, second, third and fourth gates are configured to receive first, second, third and fourth data signals, respectively. Fifth, sixth, seventh and eighth gates extend in the Y-axis direction and contact the first and second fins, the fifth, sixth, seventh and eighth gates, and are configured to receive the first, second, third and fourth select signals, respectively. An input logic circuit is configured to provide an output at an intermediate node. A ninth gate extends in the Y-axis direction and contacts the first and second fins. An output logic circuit is configured to provide a selected one of the first, second, third and fourth data signals at an output terminal.Type: GrantFiled: June 29, 2022Date of Patent: July 4, 2023Assignee: Taiwan Semiconductor Manufacturing Company Ltd.Inventors: Chi-Lin Liu, Shang-Chih Hsieh, Jian-Sing Li, Wei-Hsiang Ma, Yi-Hsun Chen, Cheok-Kei Lei
-
Patent number: 11677400Abstract: A circuit includes an input circuit, a level shifter circuit, an output circuit, and a first and a second feedback circuit. The input circuit is coupled to a first voltage supply, and configured to receive a first input signal, and to generate at least a second input signal. The level shifter circuit is coupled to a second voltage supply, and configured to generate at least a first and second signal responsive to at least the enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the second voltage supply, and configured to generate at least an output signal, a first and second feedback signal responsive to the first signal. The first and second feedback circuit are configured to receive the enable signal, and the inverted enable signal, and the corresponding first and second feedback signal.Type: GrantFiled: June 8, 2022Date of Patent: June 13, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yu-Lun Ou, Ji-Yung Lin, Yung-Chen Chien, Ruei-Wun Sun, Wei-Hsiang Ma, Jerry Chang Jui Kao, Shang-Chih Hsieh, Lee-Chung Lu
-
Publication number: 20230112357Abstract: A circuit includes a first transistor, a second type-one transistor, a first type-two transistor, a third type-one transistor, a fourth type-one transistor, and a fifth type-one transistor. The first type-one transistor has a gate configured to have a first supply voltage of a first power supply. The first type-two transistor has a gate configured to have a second supply voltage of the first power supply. The third type-one transistor has a first active-region conductively connected with an active-region of the first type-one transistor. Third type-one transistor has a second active-region and a gate conductively connected to each other. The fifth type-one transistor has a first active-region conductively connected with the gate of the third type-one transistor and has a second active-region configured to have a first supply voltage of a second power supply. The fifth type-one transistor is configured to be at a conducting state.Type: ApplicationFiled: December 9, 2022Publication date: April 13, 2023Inventors: Chi-Yu LU, Ting-Wei CHIANG, Hui-Zhong ZHUANG, Jerry Chang Jui KAO, Pin-Dai SUE, Jiun-Jia HUANG, Yu-Ti SU, Wei-Hsiang MA
-
Publication number: 20230066045Abstract: A device is disclosed that includes multiple channels and multiple processing nodes. Each processing node includes input/output (I/O) ports coupled to the channels and channel control modules coupled to the I/O ports. Each processing node is configured to select, by the channel control module in a first operation, a first I/O port of the I/O ports; communicate a first message, via the first I/O port, to a first processing node over a first channel or a second processing node over a second channel orthogonal to the first channel in a logic representation; select, by the channel control module in a second operation, a second I/O port of the I/O ports; and communicate a second message, via the second I/O port, to a third processing node over a third channel extending in a diagonal direction and non-orthogonal to the first and second channels in the logic representation.Type: ApplicationFiled: August 30, 2021Publication date: March 2, 2023Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Jerry Chang Jui Kao, Huang-Yu Chen, Yung-Chen Chien, Tzu-Ying Lin, Wei-Hsiang Ma, Chung-Hsing Wang
-
Patent number: 11526647Abstract: An integrated circuit includes a first type-one transistor, a second type-one transistor, a first type-two transistor, a second type-two transistor, a third type-one transistor, a fourth type-one transistor, and a fifth type-one transistor. The first type-one transistor has a gate configured to have a first supply voltage of a first power supply. The first type-two transistor has a gate configured to have a second supply voltage of the first power supply. The first active-region of the third type-one transistor is connected with an active-region of the first type-one transistor. The second active-region and the gate of the third type-one transistor are connected together. The first active-region of the fifth type-one transistor is connected with the gate of the third type-one transistor. The second active-region of the fifth type-one transistor is configured to have a first supply voltage of a second power supply.Type: GrantFiled: December 8, 2020Date of Patent: December 13, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chi-Yu Lu, Ting-Wei Chiang, Hui-Zhong Zhuang, Jerry Chang Jui Kao, Pin-Dai Sue, Jiun-Jia Huang, Yu-Ti Su, Wei-Hsiang Ma
-
Publication number: 20220368318Abstract: A circuit includes first and second power nodes having differing first and second voltage levels, and a reference node having a reference voltage level. A master latch outputs a first data bit based on a received data bit; a slave latch includes a first inverter that outputs a second data bit based on the first data bit and a second inverter that outputs an output data bit based on a selected one of the first data bit or a third data bit; a level shifter outputs the third data bit based on a fourth data bit; and a retention latch outputs the fourth data bit based on the second data bit. The first and second inverters and the level shifter are coupled between the first power node and the reference node, and the retention latch includes a plurality of transistors coupled between the second power node and the reference node.Type: ApplicationFiled: July 28, 2022Publication date: November 17, 2022Inventors: Kai-Chi HUANG, Yung-Chen CHIEN, Chi-Lin LIU, Wei-Hsiang MA, Jerry Chang Jui KAO, Shang-Chih HSIEH, Lee-Chung LU
-
Publication number: 20220334842Abstract: Disclosed herein are embodiments related to a power efficient multi-bit storage system. In one configuration, the multi-bit storage system includes a first storage circuit, a second storage circuit, a prediction circuit, and a clock gating circuit. In one aspect, the first storage circuit updates a first output bit according to a first input bit, in response to a trigger signal, and the second storage circuit updates a second output bit according to a second input bit, in response to the trigger signal. In one aspect, the prediction circuit generates a trigger enable signal indicating whether at least one of the first output bit or the second output bit is predicted to change a state. In one aspect, the clock gating circuit generates the trigger signal based on the trigger enable signal.Type: ApplicationFiled: July 7, 2022Publication date: October 20, 2022Applicant: Taiwan Semiconductor Manufacturing Company LimitedInventors: Kai-Chi Huang, Chi-Lin Liu, Wei-Hsiang Ma, Shang-Chih Hsieh
-
Publication number: 20220327275Abstract: A multiplexer circuit includes first and second fins each extending in an X-axis direction. First, second, third and fourth gates extend in a Y-axis direction perpendicular to the X-axis direction and contact the first and second fins. The first, second, third and fourth gates are configured to receive first, second, third and fourth data signals, respectively. Fifth, sixth, seventh and eighth gates extend in the Y-axis direction and contact the first and second fins, the fifth, sixth, seventh and eighth gates, and are configured to receive the first, second, third and fourth select signals, respectively. An input logic circuit is configured to provide an output at an intermediate node. A ninth gate extends in the Y-axis direction and contacts the first and second fins. An output logic circuit is configured to provide a selected one of the first, second, third and fourth data signals at an output terminal.Type: ApplicationFiled: June 29, 2022Publication date: October 13, 2022Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chi-Lin Liu, Shang-Chih Hsieh, Jian-Sing Li, Wei-Hsiang Ma, Yi-Hsun Chen, Cheok-Kei Lei
-
Publication number: 20220321126Abstract: A circuit includes an input circuit, a level shifter circuit, an output circuit, and a first and a second feedback circuit. The input circuit is coupled to a first voltage supply, and configured to receive a first input signal, and to generate at least a second input signal. The level shifter circuit is coupled to a second voltage supply, and configured to generate at least a first and second signal responsive to at least the enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the second voltage supply, and configured to generate at least an output signal, a first and second feedback signal responsive to the first signal. The first and second feedback circuit are configured to receive the enable signal, and the inverted enable signal, and the corresponding first and second feedback signal.Type: ApplicationFiled: June 8, 2022Publication date: October 6, 2022Inventors: Yu-Lun OU, Ji-Yung LIN, Yung-Chen CHIEN, Ruei-Wun SUN, Wei-Hsiang MA, Jerry Chang Jui KAO, Shang-Chih HSIEH, Lee-Chung LU
-
Patent number: 11456728Abstract: A circuit includes first and second power domains. The first power domain has a first power supply voltage level and includes a master latch, a first level shifter, and a slave latch coupled between the master latch and the first level shifter. The second power domain has a second power supply voltage level different from the first power supply voltage level and includes a retention latch coupled between the slave latch and the first level shifter, and the retention latch includes a second level shifter.Type: GrantFiled: May 7, 2021Date of Patent: September 27, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kai-Chi Huang, Yung-Chen Chien, Chi-Lin Liu, Wei-Hsiang Ma, Jerry Chang Jui Kao, Shang-Chih Hsieh, Lee-Chung Lu
-
Patent number: 11422819Abstract: Disclosed herein are embodiments related to a power efficient multi-bit storage system. In one configuration, the multi-bit storage system includes a first storage circuit, a second storage circuit, a prediction circuit, and a clock gating circuit. In one aspect, the first storage circuit updates a first output bit according to a first input bit, in response to a trigger signal, and the second storage circuit updates a second output bit according to a second input bit, in response to the trigger signal. In one aspect, the prediction circuit generates a trigger enable signal indicating whether at least one of the first output bit or the second output bit is predicted to change a state. In one aspect, the clock gating circuit generates the trigger signal based on the trigger enable signal.Type: GrantFiled: June 12, 2020Date of Patent: August 23, 2022Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Kai-Chi Huang, Chi-Lin Liu, Wei-Hsiang Ma, Shang-Chih Hsieh
-
Patent number: 11392743Abstract: A multiplexer circuit includes first and second fins each extending in an X-axis direction. First, second, third and fourth gates extend in a Y-axis direction perpendicular to the X-axis direction and contact the first and second fins. The first, second, third and fourth gates are configured to receive first, second, third and fourth data signals, respectively. Fifth, sixth, seventh and eighth gates extend in the Y-axis direction and contact the first and second fins, the fifth, sixth, seventh and eighth gates, and are configured to receive the first, second, third and fourth select signals, respectively. An input logic circuit is configured to provide an output at an intermediate node. A ninth gate extends in the Y-axis direction and contacts the first and second fins. An output logic circuit is configured to provide a selected one of the first, second, third and fourth data signals at an output terminal.Type: GrantFiled: May 26, 2020Date of Patent: July 19, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chi-Lin Liu, Shang-Chih Hsieh, Jian-Sing Li, Wei-Hsiang Ma, Yi-Hsun Chen, Cheok-Kei Lei
-
Publication number: 20220214712Abstract: A clock distribution system includes a clock mesh structure which has a plurality of first metal patterns extending along a first axis, a plurality of second metal patterns extending along a second axis, a plurality of third metal patterns extending along a third axis. The plurality of first metal patterns, the plurality of second metal patterns, and the plurality of third metal patterns are electrically coupled with each other. The second axis is transverse to the first axis. The third axis is oblique to both the first axis and the second axis.Type: ApplicationFiled: January 4, 2021Publication date: July 7, 2022Inventors: Jerry Chang Jui KAO, Huang-Yu CHEN, Sheng-Hsiung CHEN, Jack LIU, Yung-Chen CHIEN, Wei-Hsiang MA, Chung-Hsing WANG
-
Patent number: 11362660Abstract: A circuit includes a level shifter circuit, an output circuit, an enable circuit, a first and a second feedback circuit. The level shifter circuit is coupled to a first voltage supply, and is configured to generate at least a first and a second signal responsive to at least the first enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the first voltage supply, and configured to receive the first and the second signal. The enable circuit is configured to generate a second enable signal responsive to the first enable signal. The first feedback circuit is configured to receive the first enable signal, the second enable signal and the first feedback signal. The second feedback circuit is configured to receive the first enable signal, the second enable signal and the second feedback signal.Type: GrantFiled: May 17, 2021Date of Patent: June 14, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yu-Lun Ou, Ji-Yung Lin, Yung-Chen Chien, Ruei-Wun Sun, Wei-Hsiang Ma, Jerry Chang Jui Kao, Shang-Chih Hsieh, Lee-Chung Lu
-
Publication number: 20210389952Abstract: Disclosed herein are embodiments related to a power efficient multi-bit storage system. In one configuration, the multi-bit storage system includes a first storage circuit, a second storage circuit, a prediction circuit, and a clock gating circuit. In one aspect, the first storage circuit updates a first output bit according to a first input bit, in response to a trigger signal, and the second storage circuit updates a second output bit according to a second input bit, in response to the trigger signal. In one aspect, the prediction circuit generates a trigger enable signal indicating whether at least one of the first output bit or the second output bit is predicted to change a state. In one aspect, the clock gating circuit generates the trigger signal based on the trigger enable signal.Type: ApplicationFiled: June 12, 2020Publication date: December 16, 2021Inventors: Kai-Chi HUANG, Chi-Lin LIU, Wei-Hsiang MA, Shang-Chih HSIEH
-
Publication number: 20210294958Abstract: A logic circuit including first and second inverters, first and second NAND circuits, a transmission gate, and a transmission-gate-substitute (TGS) circuit, and wherein: for each of the first and second NAND circuits, a first input is configured to receive corresponding first and second data signals, and a second input is configured to receive an enable signal; the first inverter is configured to receive an output of the first NAND circuit; the transmission gate and the TGS circuit are arranged as a combination circuit which is configured to receive an output of the second NAND circuit as a data input, and outputs of the first inverter and the second NAND circuit as control inputs; the second inverter is configured to receive an output of the combination circuit; and an output of the second inverter represents one of an enable XOR (EXOR) function or an enable XNR (EXNR) function.Type: ApplicationFiled: June 7, 2021Publication date: September 23, 2021Inventors: Chi-Lin LIU, Jerry Chang-Jui KAO, Wei-Hsiang MA, Lee-Chung LU, Fong-Yuan CHANG, Sheng-Hsiung CHEN, Shang-Chih HSIEH
-
Publication number: 20210273640Abstract: A circuit includes a level shifter circuit, an output circuit, an enable circuit, a first and a second feedback circuit. The level shifter circuit is coupled to a first voltage supply, and is configured to generate at least a first and a second signal responsive to at least the first enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the first voltage supply, and configured to receive the first and the second signal. The enable circuit is configured to generate a second enable signal responsive to the first enable signal. The first feedback circuit is configured to receive the first enable signal, the second enable signal and the first feedback signal. The second feedback circuit is configured to receive the first enable signal, the second enable signal and the second feedback signal.Type: ApplicationFiled: May 17, 2021Publication date: September 2, 2021Inventors: Yu-Lun OU, Ji-Yung LIN, Yung-Chen CHIEN, Ruei-Wun SUN, Wei-Hsiang MA, Jerry Chang Jui KAO, Shang-Chih HSIEH, Lee-Chung LU