Patents by Inventor Wei-Hsiang Ma

Wei-Hsiang Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11392743
    Abstract: A multiplexer circuit includes first and second fins each extending in an X-axis direction. First, second, third and fourth gates extend in a Y-axis direction perpendicular to the X-axis direction and contact the first and second fins. The first, second, third and fourth gates are configured to receive first, second, third and fourth data signals, respectively. Fifth, sixth, seventh and eighth gates extend in the Y-axis direction and contact the first and second fins, the fifth, sixth, seventh and eighth gates, and are configured to receive the first, second, third and fourth select signals, respectively. An input logic circuit is configured to provide an output at an intermediate node. A ninth gate extends in the Y-axis direction and contacts the first and second fins. An output logic circuit is configured to provide a selected one of the first, second, third and fourth data signals at an output terminal.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: July 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Lin Liu, Shang-Chih Hsieh, Jian-Sing Li, Wei-Hsiang Ma, Yi-Hsun Chen, Cheok-Kei Lei
  • Publication number: 20220214712
    Abstract: A clock distribution system includes a clock mesh structure which has a plurality of first metal patterns extending along a first axis, a plurality of second metal patterns extending along a second axis, a plurality of third metal patterns extending along a third axis. The plurality of first metal patterns, the plurality of second metal patterns, and the plurality of third metal patterns are electrically coupled with each other. The second axis is transverse to the first axis. The third axis is oblique to both the first axis and the second axis.
    Type: Application
    Filed: January 4, 2021
    Publication date: July 7, 2022
    Inventors: Jerry Chang Jui KAO, Huang-Yu CHEN, Sheng-Hsiung CHEN, Jack LIU, Yung-Chen CHIEN, Wei-Hsiang MA, Chung-Hsing WANG
  • Patent number: 11362660
    Abstract: A circuit includes a level shifter circuit, an output circuit, an enable circuit, a first and a second feedback circuit. The level shifter circuit is coupled to a first voltage supply, and is configured to generate at least a first and a second signal responsive to at least the first enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the first voltage supply, and configured to receive the first and the second signal. The enable circuit is configured to generate a second enable signal responsive to the first enable signal. The first feedback circuit is configured to receive the first enable signal, the second enable signal and the first feedback signal. The second feedback circuit is configured to receive the first enable signal, the second enable signal and the second feedback signal.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: June 14, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Lun Ou, Ji-Yung Lin, Yung-Chen Chien, Ruei-Wun Sun, Wei-Hsiang Ma, Jerry Chang Jui Kao, Shang-Chih Hsieh, Lee-Chung Lu
  • Publication number: 20210389952
    Abstract: Disclosed herein are embodiments related to a power efficient multi-bit storage system. In one configuration, the multi-bit storage system includes a first storage circuit, a second storage circuit, a prediction circuit, and a clock gating circuit. In one aspect, the first storage circuit updates a first output bit according to a first input bit, in response to a trigger signal, and the second storage circuit updates a second output bit according to a second input bit, in response to the trigger signal. In one aspect, the prediction circuit generates a trigger enable signal indicating whether at least one of the first output bit or the second output bit is predicted to change a state. In one aspect, the clock gating circuit generates the trigger signal based on the trigger enable signal.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 16, 2021
    Inventors: Kai-Chi HUANG, Chi-Lin LIU, Wei-Hsiang MA, Shang-Chih HSIEH
  • Publication number: 20210294958
    Abstract: A logic circuit including first and second inverters, first and second NAND circuits, a transmission gate, and a transmission-gate-substitute (TGS) circuit, and wherein: for each of the first and second NAND circuits, a first input is configured to receive corresponding first and second data signals, and a second input is configured to receive an enable signal; the first inverter is configured to receive an output of the first NAND circuit; the transmission gate and the TGS circuit are arranged as a combination circuit which is configured to receive an output of the second NAND circuit as a data input, and outputs of the first inverter and the second NAND circuit as control inputs; the second inverter is configured to receive an output of the combination circuit; and an output of the second inverter represents one of an enable XOR (EXOR) function or an enable XNR (EXNR) function.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Chi-Lin LIU, Jerry Chang-Jui KAO, Wei-Hsiang MA, Lee-Chung LU, Fong-Yuan CHANG, Sheng-Hsiung CHEN, Shang-Chih HSIEH
  • Publication number: 20210273640
    Abstract: A circuit includes a level shifter circuit, an output circuit, an enable circuit, a first and a second feedback circuit. The level shifter circuit is coupled to a first voltage supply, and is configured to generate at least a first and a second signal responsive to at least the first enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the first voltage supply, and configured to receive the first and the second signal. The enable circuit is configured to generate a second enable signal responsive to the first enable signal. The first feedback circuit is configured to receive the first enable signal, the second enable signal and the first feedback signal. The second feedback circuit is configured to receive the first enable signal, the second enable signal and the second feedback signal.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Yu-Lun OU, Ji-Yung LIN, Yung-Chen CHIEN, Ruei-Wun SUN, Wei-Hsiang MA, Jerry Chang Jui KAO, Shang-Chih HSIEH, Lee-Chung LU
  • Publication number: 20210265987
    Abstract: A circuit includes first and second power domains. The first power domain has a first power supply voltage level and includes a master latch, a first level shifter, and a slave latch coupled between the master latch and the first level shifter. The second power domain has a second power supply voltage level different from the first power supply voltage level and includes a retention latch coupled between the slave latch and the first level shifter, and the retention latch includes a second level shifter.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: Kai-Chi HUANG, Yung-Chen CHIEN, Chi-Lin LIU, Wei-Hsiang MA, Jerry Chang Jui KAO, Shang-Chih HSIEH, Lee-Chung LU
  • Publication number: 20210203311
    Abstract: A circuit includes a multi-bit flip flop, an integrated clock gating circuit connected to the multi-bit flip flop, and a control circuit connected to the integrated clock gating circuit and the multi-bit flip flop. The control circuit compares output data of the multi-bit flip flop corresponding to input data with the input data. The control circuit generates an enable signal based on comparing the output data of the multi-bit flip flop corresponding to the input data with the input data of the multi-bit flip flop. The control circuit provides the enable signal to the integrated clock gating circuit, wherein the integrated clock gating circuit provides, based on the enable signal, a clock signal to the multi-bit flip flop causing the multi-bit flip flop to toggle.
    Type: Application
    Filed: October 28, 2020
    Publication date: July 1, 2021
    Inventors: Chi-Lin Liu, Shang-Chih Hsieh, Wei-Hsiang Ma
  • Patent number: 11030366
    Abstract: A method includes: identifying ad hoc groups of elementary standard cells recurrent in a layout diagram; and selecting one group (selected group) of the recurrent ad hoc groups such that: the cells in the selected group have connections representing a corresponding logic circuit; each cell representing a logic gate; each ad hoc group has a number of transistors and a first number of logic gates; and the selected group providing a logical function. The method includes generating one or more macro standard cells such that: each macro standard cell has a number of transistors which is smaller than the number of transistors of a corresponding ad hoc group; or each macro standard cell has a second number of logic gates different than the first number of logic gates of the corresponding ad hoc group. The method also includes adding macro standard cells to the set of standard cells.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Lin Liu, Sheng-Hsiung Chen, Jerry Chang-Jui Kao, Fong-Yuan Chang, Lee-Chung Lu, Shang-Chih Hsieh, Wei-Hsiang Ma
  • Patent number: 11012057
    Abstract: A circuit includes a slave latch including a first input and an output, the first input being coupled to a master latch, and a retention latch including a second input coupled to the output. The master latch and the slave latch are configured to operate in a first power domain having a first power supply voltage level, the retention latch is configured to operate in a second power domain having a second power supply voltage level different from the first power supply voltage level, and the circuit further includes a level shifter configured to shift a signal level from one of the first power supply voltage level or the second power supply voltage level to the other of the first power supply voltage level or the second power supply voltage level.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kai-Chi Huang, Jerry Chang Jui Kao, Chi-Lin Liu, Lee-Chung Lu, Shang-Chih Hsieh, Wei-Hsiang Ma, Yung-Chen Chien
  • Patent number: 11012073
    Abstract: A circuit includes a level shifter circuit, an output circuit and a feedback circuit. The level shifter circuit is coupled to a first voltage supply, and is configured to receive at least an enable signal, a first input signal or a second input signal. The level shifter circuit is configured to generate at least a first signal responsive to at least the enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the first voltage supply, is configured to receive the first signal, and to generate at least an output signal or a set of feedback signals responsive to the first signal. The feedback circuit is coupled to the level shifter circuit, the output circuit and the first voltage supply, and is configured to receive the enable signal, an inverted enable signal and the set of feedback signals.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Lun Ou, Jerry Chang Jui Kao, Lee-Chung Lu, Ruei-Wun Sun, Shang-Chih Hsieh, Ji-Yung Lin, Wei-Hsiang Ma, Yung-Chen Chien
  • Publication number: 20210089700
    Abstract: An integrated circuit includes a first type-one transistor, a second type-one transistor, a first type-two transistor, a second type-two transistor, a third type-one transistor, a fourth type-one transistor, and a fifth type-one transistor. The first type-one transistor has a gate configured to have a first supply voltage of a first power supply. The first type-two transistor has a gate configured to have a second supply voltage of the first power supply. The first active-region of the third type-one transistor is connected with an active-region of the first type-one transistor. The second active-region and the gate of the third type-one transistor are connected together. The first active-region of the fifth type-one transistor is connected with the gate of the third type-one transistor. The second active-region of the fifth type-one transistor is configured to have a first supply voltage of a second power supply.
    Type: Application
    Filed: December 8, 2020
    Publication date: March 25, 2021
    Inventors: Chi-Yu LU, Ting-Wei CHIANG, Hui-Zhong ZHUANG, Jerry Chang Jui KAO, Pin-Dai SUE, Jiun-Jia HUANG, Yu-Ti SU, Wei-Hsiang MA
  • Publication number: 20200395938
    Abstract: A multiplexer circuit includes first and second fins each extending in an X-axis direction. First, second, third and fourth gates extend in a Y-axis direction perpendicular to the X-axis direction and contact the first and second fins. The first, second, third and fourth gates are configured to receive first, second, third and fourth data signals, respectively. Fifth, sixth, seventh and eighth gates extend in the Y-axis direction and contact the first and second fins, the fifth, sixth, seventh and eighth gates, and are configured to receive the first, second, third and fourth select signals, respectively. An input logic circuit is configured to provide an output at an intermediate node. A ninth gate extends in the Y-axis direction and contacts the first and second fins. An output logic circuit is configured to provide a selected one of the first, second, third and fourth data signals at an output terminal.
    Type: Application
    Filed: May 26, 2020
    Publication date: December 17, 2020
    Inventors: Chi-Lin Liu, Shang-Chih Hsieh, Jian-Sing Li, Wei-Hsiang Ma, Yi-Hsun Chen, Cheok-Kei Lei
  • Patent number: 10867104
    Abstract: An integrated circuit includes a first type-one transistor, a second type-one transistor, a third type-one transistor, and a fourth type-one transistor. The first type-one transistor and the third type-one transistor are in the first portion of the type-one active zone. The integrated circuit includes a first type-two transistor in the first portion of the type-two active zone. The first type-one transistor has a gate configured to have a first supply voltage of a first power supply. The first type-two transistor has a gate configured to have a second supply voltage of the first power supply. The third type-one transistor has a gate configured to have the first supply voltage of a second power supply. The third type-one transistor has a first active-region conductively connected with an active-region of the first type-one transistor.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: December 15, 2020
    Inventors: Chi-Yu Lu, Ting-Wei Chiang, Hui-Zhong Zhuang, Pin-Dai Sue, Jerry Chang Jui Kao, Yu-Ti Su, Wei-Hsiang Ma, Jiun-Jia Huang
  • Publication number: 20200350916
    Abstract: A circuit includes a level shifter circuit, an output circuit and a feedback circuit. The level shifter circuit is coupled to a first voltage supply, and is configured to receive at least an enable signal, a first input signal or a second input signal. The level shifter circuit is configured to generate at least a first signal responsive to at least the enable signal or the first input signal. The output circuit is coupled to at least the level shifter circuit and the first voltage supply, is configured to receive the first signal, and to generate at least an output signal or a set of feedback signals responsive to the first signal. The feedback circuit is coupled to the level shifter circuit, the output circuit and the first voltage supply, and is configured to receive the enable signal, an inverted enable signal and the set of feedback signals.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Yu-Lun OU, Jerry Chang Jui KAO, Lee-Chung LU, Ruei-Wun SUN, Shang-Chih HSIEH, Ji-Yung LIN, Wei-Hsiang MA, Yung-Chen CHIEN
  • Publication number: 20200272778
    Abstract: A method includes: identifying ad hoc groups of elementary standard cells recurrent in a layout diagram, selecting one of the recurrent ad hoc groups (selected group) such that: the elementary standard cells in the selected group have connections representing a corresponding logic circuit; each elementary standard cell representing a logic gate; each ad hoc group has a number of transistors and a first number of logic gates; and the selected group providing a logical function. The method includes generating one or more macro standard cells such that: each macro standard cell has a number of transistors which is smaller than the number of transistors of the corresponding ad hoc group; or each macro standard cell has a second number of logic gates different than the first number of logic gates of the corresponding ad hoc group. The method also includes adding macro standard cells to the set of standard cells.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Inventors: Chi-Lin LIU, Sheng-Hsiung CHEN, Jerry Chang-Jui KAO, Fong-Yuan CHANG, Lee-Chung LU, Shang-Chih HSIEH, Wei-Hsiang MA
  • Patent number: 10735001
    Abstract: A circuit includes an input circuit, a level shifter circuit, an output circuit and a feedback circuit. The input circuit is coupled to a first voltage supply, and configured to receive a first input signal, and to generate a second input signal. The level shifter circuit is coupled to the input circuit, and configured to receive an enable signal, the first input signal or the second input signal, and to generate a first signal responsive to the enable signal or the first input signal. The output circuit is coupled to the level shifter circuit, and is configured to receive the first signal, and to generate an output signal or a set of feedback signals responsive to the first signal. The feedback circuit is coupled to the level shifter circuit and output circuit, and is configured to receive the enable signal or the set of feedback signals.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Lun Ou, Jerry Chang Jui Kao, Lee-Chung Lu, Ruei-Wun Sun, Shang-Chih Hsieh, Ji-Yung Lin, Wei-Hsiang Ma, Yung-Chen Chien
  • Patent number: 10664565
    Abstract: A method (of expanding a set of standard cells which comprise a library, the library being stored on a non-transitory computer-readable medium) includes: selecting one ad hoc group amongst ad hoc groups of elementary standard cells which are recurrent resulting in a selected group such that the elementary standard cells in the selected group having connections so as to represent a corresponding logic circuit, each elementary standard cell representing a logic gate, and the selected group corresponding providing a selected logical function which is representable correspondingly as a selected Boolean expression; generating, in correspondence to the selected group, one or more macro standard cells; and adding the one or more macro standard cells to, and thereby expanding, the set of standard cells; and wherein at least one aspect of the method is executed by a processor of a computer.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: May 26, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Lin Liu, Sheng-Hsiung Chen, Jerry Chang-Jui Kao, Fong-Yuan Chang, Lee-Chung Lu, Shang-Chih Hsieh, Wei-Hsiang Ma
  • Publication number: 20200074039
    Abstract: An integrated circuit includes a first type-one transistor, a second type-one transistor, a third type-one transistor, and a fourth type-one transistor. The first type-one transistor and the third type-one transistor are in the first portion of the type-one active zone. The integrated circuit includes a first type-two transistor in the first portion of the type-two active zone. The first type-one transistor has a gate configured to have a first supply voltage of a first power supply. The first type-two transistor has a gate configured to have a second supply voltage of the first power supply. The third type-one transistor has a gate configured to have the first supply voltage of a second power supply. The third type-one transistor has a first active-region conductively connected with an active-region of the first type-one transistor.
    Type: Application
    Filed: August 23, 2019
    Publication date: March 5, 2020
    Inventors: Chi-Yu LU, Ting-Wei CHIANG, Hui-Zhong ZHUANG, Pin-Dai SUE, Jerry Chang Jui KAO, Yu-Ti SU, Wei-Hsiang MA, Jiun-Jia HUANG
  • Publication number: 20190319624
    Abstract: A circuit includes an input circuit, a level shifter circuit, an output circuit and a feedback circuit. The input circuit is coupled to a first voltage supply, and configured to receive a first input signal, and to generate a second input signal. The level shifter circuit is coupled to the input circuit, and configured to receive an enable signal, the first input signal or the second input signal, and to generate a first signal responsive to the enable signal or the first input signal. The output circuit is coupled to the level shifter circuit, and is configured to receive the first signal, and to generate an output signal or a set of feedback signals responsive to the first signal. The feedback circuit is coupled to the level shifter circuit and output circuit, and is configured to receive the enable signal or the set of feedback signals.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 17, 2019
    Inventors: Yu-Lun OU, Jerry Chang Jui KAO, Lee-Chung LU, Ruei-Wun SUN, Shang-Chih HSIEH, Ji-Yung LIN, Wei-Hsiang MA, Yung-Chen CHIEN