Patents by Inventor Wei Ting Chien

Wei Ting Chien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11456373
    Abstract: In an embodiment, a device includes: a fin on a substrate, fin having a Si portion proximate the substrate and a SiGe portion distal the substrate; a gate stack over a channel region of the fin; a source/drain region adjacent the gate stack; a first doped region in the SiGe portion of the fin, the first doped region disposed between the channel region and the source/drain region, the first doped region having a uniform concentration of a dopant; and a second doped region in the SiGe portion of the fin, the second doped region disposed under the source/drain region, the second doped region having a graded concentration of the dopant decreasing in a direction extending from a top of the fin to a bottom of the fin.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: September 27, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Ling Chan, Liang-Yin Chen, Wei-Ting Chien
  • Patent number: 11450757
    Abstract: A finFET device and methods of forming a finFET device are provided. The method includes depositing a dummy gate over and along sidewalls of a fin extending upwards from a semiconductor substrate, forming a first gate spacer along a sidewall of the dummy gate, and plasma-doping the first gate spacer with carbon to form a carbon-doped gate spacer. The method further includes forming a source/drain region adjacent a channel region of the fin and diffusing carbon from the carbon-doped gate spacer into a first region of the fin to provide a first carbon-doped region. The first carbon-doped region is disposed between at least a portion of the source/drain region and the channel region of the fin.
    Type: Grant
    Filed: September 6, 2020
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Chang Lin, Chun-Feng Nieh, Huicheng Chang, Wei-Ting Chien, Chih-Pin Tsao, Hou-Ju Li, Tien-Shun Chang
  • Patent number: 11393695
    Abstract: A method of exposing a wafer to a high-tilt angle ion beam and an apparatus for performing the same are disclosed. In an embodiment, a method includes forming a patterned mask layer over a wafer, the patterned mask layer including a patterned mask feature; exposing the wafer to an ion beam, a surface of the wafer being tilted at a tilt angle with respect to the ion beam; and moving the wafer along a scan line with respect to the ion beam, a scan angle being defined between the scan line and an axis perpendicular to an axis of the ion beam, a difference between the tilt angle and the scan angle being less than 50°.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: July 19, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220152449
    Abstract: A yoga mat is provided, including: a cushion body, including at least one first thread and at least one second thread, at least one functioned thread of the at least one first thread being woven by a plurality of filaments and at least one rubber filament, the at least one rubber filament being at least partially exposed on an outer surface of the at least one functioned thread.
    Type: Application
    Filed: November 18, 2020
    Publication date: May 19, 2022
    Inventor: Wei-Ting CHIEN
  • Publication number: 20220132749
    Abstract: An absorbent ecological fabric is provided, including: at least one first fiber element, each of the at least one first fiber element being absorbent and elongate, each of the at least one first fiber element being woven by a plurality of filaments. The absorbent ecological fabric can provide a large region for plants to attach and climb.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventor: Wei-Ting Chien
  • Publication number: 20220102139
    Abstract: A semiconductor process system includes an ion source configured to bombard with a photoresist structure on a wafer. The semiconductor process system reduces a width of the photoresist structure by bombarding the photoresist structure with ions in multiple distinct ion bombardment steps having different characteristics.
    Type: Application
    Filed: June 21, 2021
    Publication date: March 31, 2022
    Inventors: Chih-Kai YANG, Yu-Tien SHEN, Hsiang-Ming CHANG, Chun-Yen CHANG, Ya-Hui CHANG, Wei-Ting CHIEN, Chia-Cheng CHEN, Liang-Yin CHEN
  • Publication number: 20220087555
    Abstract: Blood pressure measurement systems and methods that include: detecting a first wave signal from a blood vessel by using a bioinformation measurement device during a first pressing period of a wearable pressing unit, in which the wearable pressing unit exerts pressure on an upstream blood vessel relative to the blood vessel; generating an envelope signal of the first wave signal according to the first wave signal; detecting a second wave signal of the blood vessel by using the bioinformation measurement device during a second pressing period of the wearable pressing unit; determining a first timepoint where the waveform of the second wave signal intersects with the waveform of the envelope signal; outputting the pressure value that the wearable pressing unit exerts on the upstream blood vessel at the first timepoint as a systolic pressure value; determining a second timepoint where the envelope signal has a predetermined amplitude; and outputting the pressure value that the wearable pressing unit exerts on the
    Type: Application
    Filed: November 23, 2021
    Publication date: March 24, 2022
    Applicant: Cardio Ring Technologies, Inc.
    Inventors: Wen-Pin SHIH, Wei-Ting CHIEN, Leng-Chun CHEN
  • Publication number: 20220059700
    Abstract: In accordance with some embodiments, a source/drain contact is formed by exposing a source/drain region through a first dielectric layer and a second dielectric layer. The second dielectric layer is recessed under the first dielectric layer, and a silicide region is formed on the source/drain region, wherein the silicide region has an expanded width.
    Type: Application
    Filed: April 6, 2021
    Publication date: February 24, 2022
    Inventors: Wei-Ting Chien, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20210098599
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Publication number: 20200411672
    Abstract: A finFET device and methods of forming a finFET device are provided. The method includes depositing a dummy gate over and along sidewalls of a fin extending upwards from a semiconductor substrate, forming a first gate spacer along a sidewall of the dummy gate, and plasma-doping the first gate spacer with carbon to form a carbon-doped gate spacer. The method further includes forming a source/drain region adjacent a channel region of the fin and diffusing carbon from the carbon-doped gate spacer into a first region of the fin to provide a first carbon-doped region. The first carbon-doped region is disposed between at least a portion of the source/drain region and the channel region of the fin.
    Type: Application
    Filed: September 6, 2020
    Publication date: December 31, 2020
    Inventors: Yu-Chang Lin, Chun-Feng Nieh, Huicheng Chang, Wei-Ting Chien, Chih-Pin Tsao, Hou-Ju Li, Tien-Shun Chang
  • Patent number: 10868142
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Patent number: 10770570
    Abstract: A finFET device and methods of forming a finFET device are provided. The method includes depositing a dummy gate over and along sidewalls of a fin extending upwards from a semiconductor substrate, forming a first gate spacer along a sidewall of the dummy gate, and plasma-doping the first gate spacer with carbon to form a carbon-doped gate spacer. The method further includes forming a source/drain region adjacent a channel region of the fin and diffusing carbon from the carbon-doped gate spacer into a first region of the fin to provide a first carbon-doped region. The first carbon-doped region is disposed between at least a portion of the source/drain region and the channel region of the fin.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: September 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Chang Lin, Chun-Feng Nieh, Huicheng Chang, Wei-Ting Chien, Chih-Pin Tsao, Hou-Ju Li, Tien-Shun Chang
  • Publication number: 20200259001
    Abstract: In an embodiment, a device includes: a fin on a substrate, fin having a Si portion proximate the substrate and a SiGe portion distal the substrate; a gate stack over a channel region of the fin; a source/drain region adjacent the gate stack; a first doped region in the SiGe portion of the fin, the first doped region disposed between the channel region and the source/drain region, the first doped region having a uniform concentration of a dopant; and a second doped region in the SiGe portion of the fin, the second doped region disposed under the source/drain region, the second doped region having a graded concentration of the dopant decreasing in a direction extending from a top of the fin to a bottom of the fin.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Chia-Ling Chan, Liang-Yin Chen, Wei-Ting Chien
  • Patent number: 10665697
    Abstract: In an embodiment, a device includes: a fin on a substrate, fin having a Si portion proximate the substrate and a SiGe portion distal the substrate; a gate stack over a channel region of the fin; a source/drain region adjacent the gate stack; a first doped region in the SiGe portion of the fin, the first doped region disposed between the channel region and the source/drain region, the first doped region having a uniform concentration of a dopant; and a second doped region in the SiGe portion of the fin, the second doped region disposed under the source/drain region, the second doped region having a graded concentration of the dopant increasing in a direction extending from a top of the fin to a bottom of the fin.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: May 26, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ling Chan, Liang-Yin Chen, Wei-Ting Chien
  • Publication number: 20200135889
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Application
    Filed: January 11, 2019
    Publication date: April 30, 2020
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Patent number: 10529861
    Abstract: FinFET structures and methods of forming the same are disclosed. A device includes a semiconductor fin. A gate stack is on the semiconductor fin. The gate stack includes a gate dielectric on the semiconductor fin and a gate electrode on the gate dielectric. The gate electrode and the gate dielectric have top surfaces level with one another. A first inter-layer dielectric (ILD) is adjacent the gate stack over the semiconductor fin. The first ILD exerts a compressive strain on the gate stack.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: January 7, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Chang Lin, Wei-Ting Chien, Chun-Feng Nieh, Wen-Li Chiu, Huicheng Chang, Chun-Sheng Liang
  • Publication number: 20190386118
    Abstract: In an embodiment, a device includes: a fin on a substrate, fin having a Si portion proximate the substrate and a SiGe portion distal the substrate; a gate stack over a channel region of the fin; a source/drain region adjacent the gate stack; a first doped region in the SiGe portion of the fin, the first doped region disposed between the channel region and the source/drain region, the first doped region having a uniform concentration of a dopant; and a second doped region in the SiGe portion of the fin, the second doped region disposed under the source/drain region, the second doped region having a graded concentration of the dopant increasing in a direction extending from a top of the fin to a bottom of the fin.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 19, 2019
    Inventors: Chia-Ling Chan, Liang-Yin Chen, Wei-Ting Chien
  • Patent number: 10473279
    Abstract: A wide-angle linear LED lighting device includes a polygonal lampshade, a base and at least two LED modules. The polygonal lampshade includes at least two lateral parts and an installation part. The base is disposed within the polygonal lampshade and disposed on an inner surface of the installation part. There is an included angle between the base and the inner surface of the installation part. The at least two LED modules are disposed on the base. The light beams emitted by the at least two LED modules are outputted from different lateral parts of the polygonal lampshade. The light-outputting characteristics of the wide-angle linear LED lighting device are correlated with the included angle and the at least two LED modules.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: November 12, 2019
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Wei-Ting Chien, Chia-Wen Hsu
  • Patent number: D867650
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: November 19, 2019
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chung-Chieh Cheng, Kun-Ming Tien, Ying-Hao Huang, Wei-Ting Chien, Yen-Jyh Lai
  • Patent number: D869738
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: December 10, 2019
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Chung-Chieh Cheng, Kun-Ming Tien, Ying-Hao Huang, Wei-Ting Chien, Yen-Jyh Lai