Patents by Inventor Wei Yip Loh

Wei Yip Loh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10755917
    Abstract: A nitrogen plasma treatment is used on an adhesion layer of a contact plug. As a result of the nitrogen plasma treatment, nitrogen is incorporated into the adhesion layer. When a contact plug is deposited in the opening, an interlayer of a metal nitride is formed between the contact plug and the adhesion layer. A nitrogen plasma treatment is used on an opening in an insulating layer. As a result of the nitrogen plasma treatment, nitrogen is incorporated into the insulating layer at the opening. When a contact plug is deposited in the opening, an interlayer of a metal nitride is formed between the contact plug and the insulating layer.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: August 25, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Yi Chen, Wei-Yip Loh, Hung-Hsu Chen, Chih-Wei Chang
  • Publication number: 20200111739
    Abstract: A method for forming a semiconductor contact structure is provided. The method includes depositing a dielectric layer over a substrate. The method also includes etching the dielectric layer to expose a sidewall of the dielectric layer and a top surface of the substrate. In addition, the method includes forming a silicide region in the substrate. The method also includes applying a plasma treatment to the sidewall of the dielectric layer and the top surface of the substrate to form a nitridation region adjacent to a periphery of the silicide region. The method further includes depositing an adhesion layer on the dielectric layer and the silicide region.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 9, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Wen CHENG, Wei-Yip LOH, Yu-Hsiang LIAO, Sheng-Hsuan LIN, Hong-Mao LEE, Chun-I TSAI, Ken-Yu CHANG, Wei-Jung LIN, Chih-Wei CHANG, Ming-Hsing TSAI
  • Publication number: 20200083100
    Abstract: A semiconductor structure includes a substrate, a gate structure disposed over the substrate, a source/drain structure disposed in the substrate at two sides of the gate structure, and a conductive plug. The source/drain structure includes an epitaxial layer and a dual metal silicide on the epitaxial layer. The epitaxial layer includes a first semiconductor material and a second semiconductor material. A lattice constant of the second semiconductor material is greater than a lattice constant of the first semiconductor material. The dual metal silicide includes the first semiconductor material, the second semiconductor material, a first metal material and a second metal material. An atomic size of the second metal material is greater than an atomic size of the first metal material. The conductive plug penetrates the dual metal silicide.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: YAN-MING TSAI, WEI-YIP LOH, YU-MING HUANG, HUNG-HSU CHEN, CHIH-WEI CHANG
  • Publication number: 20200006055
    Abstract: A nitrogen plasma treatment is used on an adhesion layer of a contact plug. As a result of the nitrogen plasma treatment, nitrogen is incorporated into the adhesion layer. When a contact plug is deposited in the opening, an interlayer of a metal nitride is formed between the contact plug and the adhesion layer. A nitrogen plasma treatment is used on an opening in an insulating layer. As a result of the nitrogen plasma treatment, nitrogen is incorporated into the insulating layer at the opening. When a contact plug is deposited in the opening, an interlayer of a metal nitride is formed between the contact plug and the insulating layer.
    Type: Application
    Filed: November 1, 2018
    Publication date: January 2, 2020
    Inventors: Ching-Yi Chen, Wei-Yip Loh, Hung-Hsu Chen, Chih-Wei Chang
  • Patent number: 10504834
    Abstract: A semiconductor device and method of forming the same that includes forming a dielectric layer over a substrate and patterning a contact region in the dielectric layer, the contact region having side portions and a bottom portion that exposes the substrate. The method can also include forming a dielectric barrier layer in the contact region to cover the side portions and the bottom portion, and etching the dielectric barrier layer to expose the substrate. Subsequently, a conductive layer can be formed to cover the side portions and the bottom portion of the contact region and the conductive layer can be annealed to form a silicide region in the substrate beneath the bottom portion of the contact region, and the conductive layer can then be selectively removed on the side portions of the contact region.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Wen Cheng, Wei-Yip Loh, Yu-Hsiang Liao, Sheng-Hsuan Lin, Hong-Mao Lee, Chun-I Tsai, Ken-Yu Chang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Patent number: 10483164
    Abstract: A method for manufacturing a semiconductor includes following steps. An epitaxial structure including a first semiconductor material and a second semiconductor material is provided. A lattice constant of the second semiconductor material is greater than a lattice constant of the first semiconductor material. A metal-containing layer is deposited on the epitaxial structure. The metal containing layer includes a first metal material and a second metal material. An atomic size of the second metal material is greater than an atomic size of the first metal material. The metal-containing layer and the epitaxial structure are annealed to form a metal silicide layer on the epitaxial structure. The metal silicide layer includes the first semiconductor material, the second semiconductor material, the first metal material, and the second metal material.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 19, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yan-Ming Tsai, Wei-Yip Loh, Yu-Ming Huang, Hung-Hsu Chen, Chih-Wei Chang
  • Publication number: 20190273023
    Abstract: Generally, examples are provided relating to conductive features that include a barrier layer, and to methods thereof. In an embodiment, a metal layer is deposited in an opening through a dielectric layer(s) to a source/drain region. The metal layer is along the source/drain region and along a sidewall of the dielectric layer(s) that at least partially defines the opening. The metal layer is nitrided, which includes performing a multiple plasma process that includes at least one directional-dependent plasma process. A portion of the metal layer remains un-nitrided by the multiple plasma process. A silicide region is formed, which includes reacting the un-nitrided portion of the metal layer with a portion of the source/drain region. A conductive material is disposed in the opening on the nitrided portions of the metal layer.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 5, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Yip LOH, Chih-Wei CHANG, Hong-Mao LEE, Chun-Hsien HUANG, Yu-Ming HUANG, Yan-Ming TSAI, Yu-Shiuan WANG, Hung-Hsu CHEN, Yu-Kai CHEN, Yu-Wen CHENG
  • Publication number: 20190273042
    Abstract: A semiconductor device and method of forming the same that includes forming a dielectric layer over a substrate and patterning a contact region in the dielectric layer, the contact region having side portions and a bottom portion that exposes the substrate. The method can also include forming a dielectric barrier layer in the contact region to cover the side portions and the bottom portion, and etching the dielectric barrier layer to expose the substrate. Subsequently, a conductive layer can be formed to cover the side portions and the bottom portion of the contact region and the conductive layer can be annealed to form a silicide region in the substrate beneath the bottom portion of the contact region, and the conductive layer can then be selectively removed on the side portions of the contact region.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 5, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Wen Cheng, Wei-Yip Loh, Yu-Hsiang Liao, Sheng-Hsuan Lin, Hong-Mao Lee, Chun-I Tsai, Ken-Yu Chang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Publication number: 20190148230
    Abstract: A method for manufacturing a semiconductor includes following steps. An epitaxial structure including a first semiconductor material and a second semiconductor material is provided. A lattice constant of the second semiconductor material is greater than a lattice constant of the first semiconductor material. A metal-containing layer is deposited on the epitaxial structure. The metal containing layer includes a first metal material and a second metal material. An atomic size of the second metal material is greater than an atomic size of the first metal material. The metal-containing layer and the epitaxial structure are annealed to form a metal silicide layer on the epitaxial structure. The metal silicide layer includes the first semiconductor material, the second semiconductor material, the first metal material, and the second metal material.
    Type: Application
    Filed: January 26, 2018
    Publication date: May 16, 2019
    Inventors: YAN-MING TSAI, WEI-YIP LOH, YU-MING HUANG, HUNG-HSU CHEN, CHIH-WEI CHANG
  • Publication number: 20150333128
    Abstract: Provided are methods of fabricating a semiconductor structure. The methods include providing a III-V semiconductor substrate selected from InGaAs and InAs, introducing an n-type dopant selected from S, Se, and Te directly onto a surface of the III-V semiconductor substrate, introducing a co-dopant selected from N and P directly onto a surface of the III-V semiconductor substrate, and diffusing the n-type and co-dopant into the III-V semiconductor substrate, thereby forming an n-doped III-V semiconductor substrate containing the n-type dopant and the co-dopant. The methods produce inventive semiconductor structures, and devices that include the semiconductor structure.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 19, 2015
    Applicant: SEMATECH, INC.
    Inventors: Rinus LEE, Wei-Yip LOH, Robert TIECKELMANN
  • Patent number: 9029218
    Abstract: Horizontal and vertical tunneling field-effect transistors (TFETs) having an abrupt junction between source and drain regions increases probability of direct tunneling of carriers (e.g., electrons and holes). The increased probability allows a higher achievable on current in TFETs having the abrupt junction. The abrupt junction may be formed by placement of a dielectric layer or a dielectric layer and a semiconductor layer in a current path between the source and drain regions. The dielectric layer may be a low permittivity oxide such as silicon oxide, lanthanum oxide, zirconium oxide, or aluminum oxide.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: May 12, 2015
    Assignee: Sematech, Inc.
    Inventors: Wei-Yip Loh, Brian Coss, Kanghoon Jeon
  • Publication number: 20150118834
    Abstract: The present invention includes methods directed to improved processes for producing a monolayer of sulfur or selenium on the surface of a semiconductor. As a surface layer, it functions to passivate the surface; if annealed, it provides a doping element.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 30, 2015
    Applicant: Sematech, Inc.
    Inventors: Wei-Yip LOH, Robert TIECKELMANN
  • Publication number: 20150111372
    Abstract: Provided are methods for preparing a doped silicon material. The methods include contacting a surface of a silicon material with a dopant solution comprising a dopant-containing compound selected from a phosphorus-containing compound and an arsenic-containing compound, to form a layer of dopant material on the surface; and diffusing the dopant into the silicon material, thereby forming the doped silicon material, wherein the doped silicon material has a sheet resistance (Rs) of less than or equal to 2,000 ?/sq.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Applicant: SEMATECH, INC.
    Inventors: Robert TIECKELMANN, Wei-Yip LOH, Rinus Tek Po LEE
  • Publication number: 20140054549
    Abstract: A semiconductor device and tunnel field-effect transistor, and methods of fabrication thereof are provided. The device includes first and second semiconductor regions, an intermediate region, and an epitaxial layer. The intermediate region separates the first and second semiconductor regions, and the epitaxial layer extends at least partially between the first and second regions over or alongside of the intermediate region. A gate electrode is provided for gating the circuit structure. The epitaxial layer is disposed to reside between the gate electrode and at least one of the first semiconductor region, the second semiconductor region, or the intermediate region. The epitaxial layer includes an epitaxially-grown, ultra-thin body layer of semiconductor material with a thickness less than or equal to 15 nanometers. Where the semiconductor device is a tunneling field-effect transistor, the intermediate region may be a large band-gap semiconductor region, with a band-gap greater than that of the epitaxial layer.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 27, 2014
    Applicant: SEMATECH, INC.
    Inventors: Wei-Yip LOH, Wei-E WANG
  • Publication number: 20130320427
    Abstract: A tunnel field-effect transistor is provided, which includes a fin-shaped, source-drain circuit structure with a source region and a drain region. The circuit structure is angled in cross-sectional elevation, and includes a first portion and a second portion. The first portion extends away from the second portion, and the source region is disposed in the first or second portion, and the drain region is disposed in the other of the first or second portion. The transistor further includes a gate electrode for gating the circuit structure and a self-aligned tunneling region. The tunneling region is self-aligned to at least a portion of the circuit structure and extends between the gate electrode and the first or second portion of the fin-shaped circuit structure, and the self-aligned tunneling region is at least partially disposed in parallel, spaced opposing relation to a control surface of the gate electrode.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 5, 2013
    Applicant: SEMATECH, INC.
    Inventors: Wei-Yip LOH, Richard HILL, Prashant MAJHI
  • Publication number: 20130230954
    Abstract: Horizontal and vertical tunneling field-effect transistors (TFETs) having an abrupt junction between source and drain regions increases probability of direct tunneling of carriers (e.g., electrons and holes). The increased probability allows a higher achievable on current in TFETs having the abrupt junction. The abrupt junction may be formed by placement of a dielectric layer or a dielectric layer and a semiconductor layer in a current path between the source and drain regions. The dielectric layer may be a low permittivity oxide such as silicon oxide, lanthanum oxide, zirconium oxide, or aluminum oxide.
    Type: Application
    Filed: April 4, 2013
    Publication date: September 5, 2013
    Applicant: SEMATECH, INC.
    Inventors: Wei-Yip Loh, Brian Coss, Kanghoon Jeon
  • Patent number: 8436422
    Abstract: Horizontal and vertical tunneling field-effect transistors (TFETs) having an abrupt junction between source and drain regions increases probability of direct tunneling of carriers (e.g., electrons and holes). The increased probability allows a higher achievable on current in TFETs having the abrupt junction. The abrupt junction may be formed by placement of a dielectric layer or a dielectric layer and a semiconductor layer in a current path between the source and drain regions. The dielectric layer may be a low permittivity oxide such as silicon oxide, lanthanum oxide, zirconium oxide, or aluminum oxide.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: May 7, 2013
    Assignee: Sematech, Inc.
    Inventors: Wei-Yip Loh, Brian Coss, Kanghoon Jeon
  • Patent number: 8421165
    Abstract: Apparatuses, systems, and methods for tunneling MOSFETs (TFETs) using a self-aligned heterostructure source and isolated drain. TFETs that have an abrupt junction between source and drain regions have an increased probability of carrier direct tunneling (e.g., electrons and holes). The increased probability allows a higher achievable on current in TFETs having the abrupt junction.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: April 16, 2013
    Assignee: Sematech, Inc.
    Inventors: Wei-Yip Loh, Kanghoon Jeon, Chanro Park
  • Patent number: 8362494
    Abstract: An electro-optic device is disclosed. The electro-optic device includes an insulating layer, a first semiconducting region disposed above the insulating layer and being doped with doping atoms of a first conductivity type, a second semiconducting region disposed above the insulating layer and being doped with doping atoms of a second conductivity type and an electro-optic active region disposed above the insulating layer and between the first semiconducting region and the second semiconducting region. The electro-optic active region includes a first partial active region and a second partial active region and an insulating structure in between. The insulating structure extends perpendicular to the surface of the insulating layer such that there is no overlap of the first partial active region and the second partial active region in the direction perpendicular to the surface of the insulating layer. A method for manufacturing is also disclosed.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: January 29, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Guo-Qiang Patrick Lo, Kee-Soon Darryl Wang, Wei-Yip Loh, Mingbin Yu, Junfeng Song
  • Patent number: 8178939
    Abstract: A semiconductor structure may include a semiconductor bulk region with a gate stack on the semiconductor bulk region. The source region and the drain region in the semiconductor bulk region may be located on opposing sides of a channel region below the gate stack. An interfacial layer coupled to the channel region may modify a workfunction of a metal-semiconductor contact. In a MOSFET, the metal-semiconductor contact may be between a metal contact and the source region and the drain region. In a Schottky barrier-MOSFET, the metal-semiconductor contact may be between a silicide region in the source region and/or the drain region and the channel region. The interfacial layer may use a dielectric-dipole mitigated scheme and may include a conducting layer and a dielectric layer. The dielectric layer may include lanthanum oxide or aluminum oxide used to tune the workfunction of the metal-semiconductor contact.
    Type: Grant
    Filed: June 21, 2009
    Date of Patent: May 15, 2012
    Assignee: Sematech, Inc.
    Inventors: Wei-Yip Loh, Prashant Majhi, Brian Coss