Patents by Inventor Wei Yu

Wei Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9031108
    Abstract: A temperature-compensated laser driving circuit for driving a laser component is provided. The temperature-compensated laser driving circuit includes: a temperature compensation circuit, configured to generate a second current based on a first current and a temperature-independent current; and a modulation current generating circuit, configured to generate a modulation current based on the second current, and calibrate optical power output of the laser component based on the modulation current. The first current is proportional to the absolute temperature. The second current and the first current have a slope relative to the absolute temperature respectively, and the slope of the second current relative to the absolute temperature is larger than of the slope of the first current relative to the absolute temperature.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: May 12, 2015
    Assignee: VIA TECHNOLOGIES, INC.
    Inventors: Cheng-Ming Ying, Wei-Yu Wang, Yi-Jan Wang, Yen-Yu Chen
  • Patent number: 9030760
    Abstract: An imaging lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element and a fourth lens element. The positive first lens element has a convex object-side surface at a paraxial region. The negative second lens element has a concave image-side surface at a paraxial region, wherein the image-side surface thereof has a convex shape at a peripheral region, and the surfaces thereof are aspheric. The positive third lens element has a convex object-side surface at a paraxial region and a convex image-side surface at a paraxial region. The negative fourth lens element has a concave image-side surface at a paraxial region, wherein the image-side surface thereof has a convex shape at a peripheral region, and the surfaces thereof are aspheric. The imaging lens assembly has a total of four lens elements with refractive power.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: May 12, 2015
    Assignee: Largan Precision Co., Ltd.
    Inventors: Lin-Yao Liao, Wei-Yu Chen
  • Publication number: 20150123571
    Abstract: A system includes a plurality of light-emitting devices electrically coupled together. A temperature of each of the light-emitting devices is correlated with a voltage of said light-emitting device. The system includes a current driver configured to control an amount of current through at least a subset of the light-emitting devices. The system includes electronic circuitry that is electrically coupled to the subset of the light-emitting devices. The electronic circuitry is configured to: measure a voltage of the subset of the light-emitting devices while the light-emitting devices are in operation; determine, based on the measured voltage, whether the subset of the light-emitting devices is hotter than an acceptable temperature threshold; and instruct the current driver to reduce the amount of current through the subset of the light-emitting devices if the subset of the light-emitting devices has been determined to be hotter than the acceptable temperature threshold.
    Type: Application
    Filed: December 1, 2014
    Publication date: May 7, 2015
    Inventor: Wei-Yu Yeh
  • Publication number: 20150124149
    Abstract: An image lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element and a fourth lens element. The first lens element with positive refractive power has a convex object-side surface in a paraxial region thereof. The second lens element with negative refractive power has a concave object-side surface in a paraxial region thereof and a concave image-side surface in a paraxial region thereof. The third lens element with positive refractive power has a concave object-side surface in a paraxial region thereof and a convex image-side surface in a paraxial region thereof. The fourth lens element with negative refractive power has a concave image-side surface in a paraxial region thereof. The image lens assembly has a total of four lens elements with refractive power.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 7, 2015
    Applicant: Largan Precision Co., Ltd.
    Inventors: Hsiang-Chi TANG, Wei-Yu CHEN
  • Publication number: 20150124448
    Abstract: The present disclosure involves a lighting apparatus. The lighting apparatus includes a photonic device that generates light. The lighting apparatus includes a printed circuit board (PCB) on which the photonic device is located. The lighting apparatus includes a diffuser cap having a curved profile covering the PCB and the photonic device. The diffuser cap has a textured surface for scattering light generated by the photonic device. The lighting apparatus includes a thermally conductive cup that surrounds the diffuser cap and thermal conductively coupled to the PCB. The cup has a reflective inner surface that reflects light transmitting through the diffuser cap. The lighting apparatus includes a heat dissipation structure for dissipating heat generated by the photonic device. The heat dissipation structure is thermally coupled to the cup.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 7, 2015
    Inventors: Pei-Wen Ko, Wei-Yu Yeh
  • Publication number: 20150123842
    Abstract: A microwave sensor adjusts its sensing range based on a range gate selected from multiple range gates. An active antenna module transmits a first FMCW signal toward a target based on the selected range gate and for receiving second FMCW signal reflected from the target. A modulating module is used for generating modulation signal. The bandwidth of the first FMCW signal depends on an amplitude of the modulation signal. A first demodulator is used for demodulating the first FMCW signal and the second FMCW signal to generate beat frequency. A second demodulator is used to demodulate the beat frequency signal to generate a Doppler signal. An indentifying circuit is used for generating a triggering signal based on a voltage difference between integral of the Doppler signal from an object within the rage gate and an integral of clutter.
    Type: Application
    Filed: January 15, 2014
    Publication date: May 7, 2015
    Applicant: U&U ENGINEERING INC
    Inventors: Chi-Ho CHANG, Li-Wei YU, Yi-Ting YANG, Yun-Chun SUNG, Ming-Tsung HSU, Yih-Ming HUANG, Ping-Chang TSAO
  • Patent number: 9026883
    Abstract: A decoding apparatus has an on-chip buffer, an external buffer interface, and a turbo decoder. The on-chip buffer is arranged for buffering each code block to be decoded. The external buffer interface is arranged for accessing an off-chip buffer. The turbo decoder is arranged for decoding a specific code block read from the on-chip buffer. The specific code block is not transmitted from the on-chip buffer to the off-chip buffer via the external buffer interface unless decoding fail of the specific code block is identified.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 5, 2015
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Chiaming Lo, Yi-Chang Liu, Lawrence Chen Lee, Wei-Yu Lai, Wei-De Wu
  • Publication number: 20150115419
    Abstract: A method is disclosed that includes the operations outlined below. A plurality of dummy conductive cells that provide different densities are formed in a plurality of empty areas in a plurality of metal layers of a semiconductor device according to overlap conditions of the empty areas between each pair of neighboring metal layers.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Yu MA, Hui-Mei CHOU, Kuo-Ji CHEN
  • Publication number: 20150116845
    Abstract: Present embodiments provide for a mobile device and an optical imaging lens thereof. The optical imaging lens comprises five lens elements positioned sequentially from an object side to an image side. Though controlling the convex or concave shape of the surfaces and/or the refracting power of the lens elements, the optical imaging lens shows better optical characteristics and the total length of the optical imaging lens is shortened.
    Type: Application
    Filed: November 17, 2014
    Publication date: April 30, 2015
    Inventors: KUO-WEN CHANG, Poche Lee, Wei-Yu Lo
  • Publication number: 20150117986
    Abstract: Embodiments of mechanisms for charging a gas into a cassette pod are provided. A method for charging a gas into a cassette pod includes loading at least one semiconductor wafer into a housing of the cassette pod after the at least one semiconductor wafer is processed by a processing apparatus. The method also includes removing the cassette pod from the processing apparatus by a transporting apparatus to a predetermined destination. The method further includes charging a gas into an enclosure in the housing of the cassette pod from a gas supply assembly disposed on the housing.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Wei-Yu LAI, Hung-Wen CHEN
  • Publication number: 20150121050
    Abstract: A processor, a device, and a non-transitory computer readable medium for performing branch prediction in a processor are presented. The processor includes a front end unit. The front end unit includes a level 1 branch target buffer (BTB), a BTB index predictor (BIP), and a level 1 hash perceptron (HP). The BTB is configured to predict a target address. The BIP is configured to generate a prediction based on a program counter and a global history, wherein the prediction includes a speculative partial target address, a global history value, a global history shift value, and a way prediction. The HP is configured to predict whether a branch instruction is taken or not taken.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 30, 2015
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Douglas Williams, Sahil Arora, Nikhil Gupta, Wei-Yu Chen, Debjit Das Sarma, Marius Evers
  • Patent number: 9019631
    Abstract: An optical lens assembly includes, in order from an object side to an image side, a first lens element and a second lens element. The first lens element with positive refractive power has an object-side surface being convex at a paraxial region and an image-side surface being concave at a paraxial region. The second lens element with negative refractive power is made of plastic material and has an image-side surface being concave at a paraxial region and being convex at a peripheral region, wherein an object-side surface and the image-side surface of the second lens element are aspheric.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: April 28, 2015
    Assignee: Largan Precision Co., Ltd.
    Inventors: Dung-Yi Hsieh, Tsung-Han Tsai, Wei-Yu Chen
  • Patent number: 9019630
    Abstract: A lens assembly of optical imaging system includes a first lens element, a second lens element, and a third lens element. The first lens element with positive refractive power has a convex object-side surface near an optical axis. The second lens element with negative refractive power has a concave object-side surface near the optical axis, and is made of plastic. The object-side surface and the image-side surface of the second lens element are aspheric. The third lens element with negative refractive power has an image-side surface being concave near the optical axis and convex away from the optical axis, and is made of plastic. The object-side surface and the image-side surface of the third lens element are aspheric.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: April 28, 2015
    Assignee: Largan Precision Co., Ltd.
    Inventors: Tsung-Han Tsai, Wei-Yu Chen
  • Patent number: 9018086
    Abstract: The present invention provides a method of forming a semiconductor device having a metal gate. A substrate is provided and a gate dielectric and a work function metal layer are formed thereon, wherein the work function metal layer is on the gate dielectric layer. Then, a top barrier layer is formed on the work function metal layer. The step of forming the top barrier layer includes increasing a concentration of a boundary protection material in the top barrier layer. Lastly, a metal layer is formed on the top barrier layer. The present invention further provides a semiconductor device having a metal gate.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: April 28, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Chin-Fu Lin, Min-Chuan Tsai, Wei-Yu Chen, Chien-Hao Chen
  • Publication number: 20150108638
    Abstract: A package on package structure includes a first substrate having a first region and a second region, a bump formed on the first region of the first substrate, a first semiconductor die bonded to the second region of the first substrate, and a semiconductor die package bonded to the first substrate. The bump includes a metallic structure and a plurality of minor elements dispersed in the metallic structure. The semiconductor die package includes a connector bonded to the bump, and the first semiconductor die is between the semiconductor die package and the first substrate.
    Type: Application
    Filed: December 1, 2014
    Publication date: April 23, 2015
    Inventors: Chun-Cheng Lin, Hsiu-Jen Lin, Cheng-Ting Chen, Wei-Yu Chen, Ming-Da Cheng, Chung-Shi Liu
  • Publication number: 20150109658
    Abstract: An electrophoretic display apparatus includes a driving substrate, an electrophoretic display medium layer and a color resist layer. The electrophoretic display medium layer is disposed on the driving substrate. The color resist layer is disposed on the electrophoretic display medium layer. The color resist layer includes pixel zones. The pixel zones include a first color zone, a second color zone, a third color zone, a fourth color zone and a vacant zone. The first color one and the third color zone are respectively positioned on two opposite edges of the vacant zone. The second color zone and the fourth color zone are respectively positioned on another two opposite edges of the vacant zone. The first color zone, the second color zone, the third color zone and the fourth color zone have different colors.
    Type: Application
    Filed: March 12, 2014
    Publication date: April 23, 2015
    Applicant: E Ink Holdings Inc.
    Inventors: Fang-An SHU, Ted-Hong SHINN, Kuan-Yi LIN, Tzung-Wei YU
  • Publication number: 20150103225
    Abstract: An optical image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with refractive power has a convex object-side surface in a paraxial region thereof and a concave image-side surface in a paraxial region thereof. The second lens element has positive refractive power. The third lens element with negative refractive power has a concave image-side surface in a paraxial region thereof. The fourth lens element with positive refractive power has a convex image-side surface in a paraxial region thereof. The fifth lens element with negative refractive power has a concave image-side surface in a paraxial region thereof, wherein the surfaces thereof are aspheric. The optical image capturing system has a total of five lens elements with refractive power.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 16, 2015
    Applicant: Largan Precision Co., Ltd.
    Inventors: Po-Lun HSU, Cheng-Chen LIN, Lin-Yao LIAO, Wei-Yu CHEN
  • Patent number: 9006770
    Abstract: A light emitting diode (LED) carrier assembly includes an LED die mounted on a silicon submount, a middle layer that is thermally conductive and electrically isolating disposed below the silicon submount, and a printed circuit board (PCB) disposed below the middle layer. The middle layer is bonded with the silicon submount and the PCB.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: April 14, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Wei-Yu Yeh, Pei-Wen Ko, Chih-Hsuan Sun, Hsueh-Hung Fu
  • Patent number: 9001434
    Abstract: An imaging lens system includes six non-cemented lens elements with refractive power, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element has positive refractive power. The second lens element has refractive power. The third lens element has positive refractive power. The fourth lens element has refractive power. The fifth lens element has refractive power, wherein both of the surfaces thereof are aspheric. The sixth lens element with refractive power has a concave image-side surface in a paraxial region thereof, wherein the image-side surface has at least one convex shape in an off-axis region thereof, and both of the surfaces thereof are aspheric. The imaging lens system has a total of six lens elements with refractive power.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: April 7, 2015
    Assignee: Largan Precision Co., Ltd.
    Inventors: Kuan-Ming Chen, Wei-Yu Chen
  • Patent number: 8999770
    Abstract: A semiconductor structure includes a module with a plurality of die regions, a plurality of light-emitting devices disposed upon the substrate so that each of the die regions includes one of the light-emitting devices, and a lens board over the module and adhered to the substrate with glue. The lens board includes a plurality of microlenses each corresponding to one of the die regions, and at each one of the die regions the glue provides an air-tight encapsulation of one of the light-emitting devices by a respective one of the microlenses. Further, phosphor is included as a part of the lens board.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: April 7, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Tien-Ming Lin, Chih-Hsuan Sun, Wei-Yu Yeh