Patents by Inventor Wei-Yuan Lu

Wei-Yuan Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11355641
    Abstract: The present application provides a semiconductor device and the method of making the same. The method includes recessing a fin extending from a substrate, forming a base epitaxial feature on the recessed fin, forming a bar-like epitaxial feature on the base epitaxial feature, and forming a conformal epitaxial feature on the bar-like epitaxial feature. The forming of the bar-like epitaxial feature includes in-situ doping the bar-like epitaxial feature with an n-type dopant at a first doping concentration. The forming of the conformal epitaxial feature includes in-situ doping the conformal epitaxial feature with a second doping concentration greater than the first doping concentration.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: June 7, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-An Lin, Wei-Yuan Lu, Feng-Cheng Yang, Tzu-Ching Lin, Li-Li Su
  • Patent number: 11329159
    Abstract: A field effect transistor includes a substrate and spacers over the substrate. The field effect transistor includes a channel recess cavity between the spacers, wherein a bottom-most surface of the channel recess cavity is parallel to the substrate top surface. The field effect transistor includes a gate stack, wherein the gate stack includes a bottom portion in the channel recess cavity and a top portion outside the channel recess cavity, the gate stack further includes a gate dielectric layer extending from the channel recess cavity along sidewalls of each of the pair of spacers, and the gate dielectric layer directly contacts the substrate below substrate top surface. The field effect transistor includes a strained source/drain (S/D) below the substrate top surface, wherein the strained S/D extends below the gate stack. The field effect transistor further includes a source/drain (S/D) extension substantially conformably surrounding the strained S/D.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: May 10, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Fai Cheng, Ka-Hing Fung, Li-Ping Huang, Wei-Yuan Lu
  • Publication number: 20220131014
    Abstract: A semiconductor structure and a method of forming the same are provided. A semiconductor structure according to the present disclosure includes a first channel member and a second channel member disposed over the first channel member, a first channel extension feature coupled to the first channel member, a second channel extension feature coupled to the second channel member, and an inner spacer feature disposed between the first channel extension feature and the second channel extension feature.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Inventors: Wei-Jen Lai, Wei-Yuan Lu, Chih-Hao Yu, Chia-Pin Lin
  • Publication number: 20220130961
    Abstract: A method of semiconductor fabrication includes providing a semiconductor structure having a substrate and first, second, third, and fourth fins above the substrate. The method further includes forming an n-type epitaxial source/drain (S/D) feature on the first and second fins, forming a p-type epitaxial S/D feature on the third and fourth fins, and performing a selective etch process on the semiconductor structure to remove upper portions of the n-type epitaxial S/D feature and the p-type epitaxial S/D feature such that more is removed from the n-type epitaxial S/D feature than the p-type epitaxial S/D feature.
    Type: Application
    Filed: January 10, 2022
    Publication date: April 28, 2022
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chun-An Lin, Wei-Yuan Lu, Guan-Ren Wang, Peng Wang
  • Publication number: 20220093800
    Abstract: A semiconductor device and method of manufacturing the semiconductor device are provided. An exemplary semiconductor device comprises a fin disposed over a substrate, wherein the fin includes a channel region and a source/drain region; a gate structure disposed over the substrate and over the channel region of the fin; a source/drain feature epitaxially grown in the source/drain region of the fin, wherein the source/drain feature includes a top epitaxial layer and a lower epitaxial layer formed below the top epitaxial layer, and the lower epitaxial layer includes a wavy top surface; and a contact having a wavy bottom surface matingly engaged with the wavy top surface of the lower epitaxial layer of the source/drain feature.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Inventors: Chia-Ta Yu, Yen-Chieh Huang, Wei-Yuan Lu, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11222951
    Abstract: A method of semiconductor fabrication includes providing a semiconductor structure having a substrate and first, second, third, and fourth fins above the substrate. The method further includes forming an n-type epitaxial source/drain (S/D) feature on the first and second fins, forming a p-type epitaxial S/D feature on the third and fourth fins, and performing a selective etch process on the semiconductor structure to remove upper portions of the n-type epitaxial S/D feature and the p-type epitaxial S/D feature such that more is removed from the n-type epitaxial S/D feature than the p-type epitaxial S/D feature.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chun-An Lin, Wei-Yuan Lu, Guan-Ren Wang, Peng Wang
  • Patent number: 11211295
    Abstract: A method for fabricating a semiconductor device having a substantially undoped channel region includes providing a substrate having a fin extending from the substrate. An in-situ doped layer is formed on the fin. By way of example, the in-situ doped layer may include an in-situ doped well region formed by an epitaxial growth process. In some examples, the in-situ doped well region includes an N-well or a P-well region. After formation of the in-situ doped layer on the fin, an undoped layer is formed on the in-situ doped layer, and a gate stack is formed over the undoped layer. The undoped layer may include an undoped channel region formed by an epitaxial growth process. In various examples, a source region and a drain region are formed adjacent to and on either side of the undoped channel region.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: December 28, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun Hsiung Tsai, Wei-Yuan Lu
  • Patent number: 11211455
    Abstract: Embodiments of mechanisms for forming dislocations in source and drain regions of finFET devices are provided. The mechanisms involve recessing fins and removing the dielectric material in the isolation structures neighboring fins to increase epitaxial regions for dislocation formation. The mechanisms also involve performing a pre-amorphous implantation (PAI) process either before or after the epitaxial growth in the recessed source and drain regions. An anneal process after the PAI process enables consistent growth of the dislocations in the source and drain regions. The dislocations in the source and drain regions (or stressor regions) can form consistently to produce targeted strain in the source and drain regions to improve carrier mobility and device performance for NMOS devices.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: December 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Wei-Yuan Lu, Chien-Tai Chan, Wei-Yang Lee, Da-Wen Lin
  • Patent number: 11195951
    Abstract: A semiconductor device and method of manufacturing the semiconductor device are provided. An exemplary semiconductor device comprises a fin disposed over a substrate, wherein the fin includes a channel region and a source/drain region; a gate structure disposed over the substrate and over the channel region of the fin; a source/drain feature epitaxially grown in the source/drain region of the fin, wherein the source/drain feature includes a top epitaxial layer and a lower epitaxial layer formed below the top epitaxial layer, and the lower epitaxial layer includes a wavy top surface; and a contact having a wavy bottom surface matingly engaged with the wavy top surface of the lower epitaxial layer of the source/drain feature.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: December 7, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ta Yu, Yen-Chieh Huang, Wei-Yuan Lu, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11167268
    Abstract: A catalyst includes a carbon black support and active metal particles. A surface of the carbon black support has a relative atomic percentage of oxygen atoms ranged from 2 atom % to 12 atom %. The active metal particles are distributed on the carbon black support. Each of the active metal particles includes rhodium metal and rhodium oxide. A method for manufacturing the catalyst and a method for hydrogenating an aromatic epoxy compound are also provided herein.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 9, 2021
    Assignee: National Tsing Hua University
    Inventors: Chung-Sung Tan, Wei-Yuan Lu
  • Patent number: 11158740
    Abstract: A method includes forming a metal-oxide-semiconductor field-effect transistor (MOSFET). The Method includes performing an implantation to form a pre-amorphization implantation (PAI) region adjacent to a gate electrode of the MOSFET, forming a strained capping layer over the PAI region, and performing an annealing on the strained capping layer and the PAI region to form a dislocation plane. The dislocation plane is formed as a result of the annealing, with a tilt angle of the dislocation plane being smaller than about 65 degrees.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Wei-Yuan Lu
  • Publication number: 20210280579
    Abstract: A method comprises growing an epitaxial layer on a first region of a first wafer while remaining a second region of the first wafer exposed; forming a first dielectric layer over the epitaxial layer and the second region; forming a first transistor on a second wafer; forming a second dielectric layer over the first transistor; bonding the first and second dielectric layers; and forming second and third transistors on the epitaxial layer and on the second region of the first wafer, respectively.
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Te LIN, Wei-Yuan LU, Feng-Cheng YANG
  • Publication number: 20210257482
    Abstract: A method for fabricating a semiconductor device that includes a merged source/drain feature extending between two adjacent fin structures. An air gap is formed under the merged source/drain feature. Forming the epitaxial feature includes growing a first epitaxial feature having a first portion over the first fin structure and a second portion over the second fin structure, growing a second epitaxial feature over the first and second portions of the first epitaxial feature, and growing a third epitaxial feature over the second epitaxial feature. The second epitaxial feature includes a merged portion between the first fin structure and the second fin structure.
    Type: Application
    Filed: November 12, 2020
    Publication date: August 19, 2021
    Inventors: Feng-Ching CHU, Chung-Chi WEN, Wei-Yuan LU, Feng-Cheng YANG, Yen-Ming CHEN
  • Publication number: 20210202733
    Abstract: The present application provides a semiconductor device and the method of making the same. The method includes recessing a fin extending from a substrate, forming a base epitaxial feature on the recessed fin, forming a bar-like epitaxial feature on the base epitaxial feature, and forming a conformal epitaxial feature on the bar-like epitaxial feature. The forming of the bar-like epitaxial feature includes in-situ doping the bar-like epitaxial feature with an n-type dopant at a first doping concentration. The forming of the conformal epitaxial feature includes in-situ doping the conformal epitaxial feature with a second doping concentration greater than the first doping concentration.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: Chun-An Lin, Wei-Yuan Lu, Feng-Cheng Yang, Tzu-Ching Lin, Li-Li Su
  • Patent number: 11018224
    Abstract: A semiconductor device and method of manufacturing the semiconductor device are provided. In some embodiments, the semiconductor device includes a fin extending from a substrate and a gate structure disposed over the fin. The gate structure includes a gate dielectric formed over the fin, a gate electrode formed over the gate dielectric, and a sidewall spacer formed along a sidewall of the gate electrode. In some cases, a U-shaped recess is within the fin and adjacent to the gate structure. A first source/drain layer is conformally formed on a surface of the U-shaped recess, where the first source/drain layer extends at least partially under the adjacent gate structure. A second source/drain layer is formed over the first source/drain layer. At least one of the first and second source/drain layers includes silicon arsenide (SiAs).
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: May 25, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Ta Yu, Sheng-Chen Wang, Wei-Yuan Lu, Chien-I Kuo, Li-Li Su, Feng-Cheng Yang, Yen-Ming Chen, Sai-Hooi Yeong
  • Patent number: 11018134
    Abstract: A semiconductor device is provided. The semiconductor device includes a first transistor, a first interconnect structure, and a second transistor. The first transistor has a first gate length. The first interconnect structure is over the first transistor. The second transistor is over the first interconnect structure. The second transistor is electrically coupled to the first transistor through the first interconnect structure. The second transistor has a second gate length, and the first gate length is shorter than the second gate length.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Te Lin, Wei-Yuan Lu, Feng-Cheng Yang
  • Publication number: 20210091078
    Abstract: In in a method of manufacturing a semiconductor device, an interlayer dielectric (ILD) layer is formed over an underlying structure. The underlying structure includes a gate structure disposed over a channel region of a fin structure, and a first source/drain epitaxial layer disposed at a source/drain region of the fin structure. A first opening is formed over the first source/drain epitaxial layer by etching a part of the ILD layer and an upper portion of the first source/drain epitaxial layer. A second source/drain epitaxial layer is formed over the etched first source/drain epitaxial layer. A conductive material is formed over the second source/drain epitaxial layer.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 25, 2021
    Inventors: Wei-Yuan LU, Sai-Hooi YEONG
  • Publication number: 20210086167
    Abstract: A catalyst includes a carbon black support and active metal particles. A surface of the carbon black support has a relative atomic percentage of oxygen atoms ranged from 2 atom % to 12 atom %. The active metal particles are distributed on the carbon black support. Each of the active metal particles includes rhodium metal and rhodium oxide. A method for manufacturing the catalyst and a method for hydrogenating an aromatic epoxy compound are also provided herein.
    Type: Application
    Filed: October 25, 2019
    Publication date: March 25, 2021
    Inventors: Chung-Sung Tan, Wei-Yuan Lu
  • Patent number: 10950730
    Abstract: The present application provides a semiconductor device and the method of making the same. The method includes recessing a fin extending from a substrate, forming a base epitaxial feature on the recessed fin, forming a bar-like epitaxial feature on the base epitaxial feature, and forming a conformal epitaxial feature on the bar-like epitaxial feature. The forming of the bar-like epitaxial feature includes in-situ doping the bar-like epitaxial feature with an n-type dopant at a first doping concentration. The forming of the conformal epitaxial feature includes in-situ doping the conformal epitaxial feature with a second doping concentration greater than the first doping concentration.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: March 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-An Lin, Wei-Yuan Lu, Feng-Cheng Yang, Tzu-Ching Lin, Li-Li Su
  • Publication number: 20200403098
    Abstract: A field effect transistor includes a substrate and spacers over the substrate. The field effect transistor includes a channel recess cavity between the spacers, wherein a bottom-most surface of the channel recess cavity is parallel to the substrate top surface. The field effect transistor includes a gate stack, wherein the gate stack includes a bottom portion in the channel recess cavity and a top portion outside the channel recess cavity, the gate stack further includes a gate dielectric layer extending from the channel recess cavity along sidewalls of each of the pair of spacers, and the gate dielectric layer directly contacts the substrate below substrate top surface. The field effect transistor includes a strained source/drain (S/D) below the substrate top surface, wherein the strained S/D extends below the gate stack. The field effect transistor further includes a source/drain (S/D) extension substantially conformably surrounding the strained S/D.
    Type: Application
    Filed: July 14, 2020
    Publication date: December 24, 2020
    Inventors: Chun-Fai CHENG, Ka-Hing FUNG, Li-Ping HUANG, Wei-Yuan LU