Patents by Inventor Weicheng Zhang

Weicheng Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160087633
    Abstract: A driver includes first and second resistors coupled to a supply voltage and coupled to pairs of main transistors at positive and negative output nodes. The first and second pairs of main transistors provide emphasis and de-emphasis on the positive and negative output nodes. The driver also includes a delay inverter, a pull up booster and a pull down booster. The delay inverter delays and inverts each of a pair of differential input signals to provide delayed and inverted differential signals. The pull up booster provides a bypass current path that bypasses the first and second resistors but includes at least some of the first and second pairs of main transistors. The pull down booster provides an additional current path from the supply voltage through the first or second resistor to ground.
    Type: Application
    Filed: September 8, 2015
    Publication date: March 24, 2016
    Inventors: Weicheng ZHANG, Huanzhang HUANG, Yanli FAN, Roland SPERLICH
  • Patent number: 8976053
    Abstract: Some embodiments of the present invention provide a method and apparatus for a Vernier ring time to digital converter having a single clock input and an all digital circuit that calculates a fixed delay relationship between a set of slow buffers and fast buffers. A method for calibrating a Vernier Delay Line of a TDC, comprising the steps of inputting a reference clock to a slow buffer and to a fast buffer, determining a delay ratio of the slow buffer and fast buffer; and adjusting the delay ratio of the slow buffer and fast buffer to a fixed delay ratio value wherein an up-down accumulator generates control signals to adjust the slow buffer.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: March 10, 2015
    Assignee: Amlogic Co., Ltd.
    Inventors: Weicheng Zhang, Ming Shi, Wei-Hua Zou, Shu-Sun Yu, Chieh-Yuan Chao
  • Publication number: 20140159814
    Abstract: A differential receiver with reduced common mode induced propagation delay variance. One implementation of a differential receiver includes a first differential amplifier, a second differential amplifier, and a first current source. The first differential amplifier includes a first transistor pair. The second differential amplifier includes a second transistor pair. The first current source is coupled to a drain node of a first transistor of the first transistor pair. The first current source is configured to generate a variable first current at the drain node as of function of a sum of a variable tail current of the first differential amplifier and a variable tail current of the second differential amplifier.
    Type: Application
    Filed: October 8, 2013
    Publication date: June 12, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Weicheng Zhang, Huanzhang Huang, Yanli Fan, Mark W. Morgan
  • Patent number: 8102197
    Abstract: An adaptive digital phase locked loop comprises: a digital configurable phase detector for receiving a reference signal and a feedback signal and for generating a detection signal indicative of a phase/frequency difference between the reference signal and the feedback signal; a configurable digital loop filter for filtering the DPFD detection signal; a digital locking monitor for monitoring polarity transitions of the detection signal and adaptively switching the locking modes and DCO tuning resolution; and a DCO for generating the feedback signal as a function of the detection signal.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: January 24, 2012
    Assignee: Amlogic Co., Ltd.
    Inventors: Weicheng Zhang, Ming Shi, Wei-Hua Zou, Shu-Sun Yu, Chieh-Yuan Chao
  • Publication number: 20120013377
    Abstract: An adaptive digital phase locked loop comprises: a digital configurable phase detector for receiving a reference signal and a feedback signal and for generating a detection signal indicative of a phase/frequency difference between the reference signal and the feedback signal; a configurable digital loop filter for filtering the DPFD detection signal; a digital locking monitor for monitoring polarity transitions of the detection signal and adaptively switching the locking modes and DCO tuning resolution; and a DCO for generating the feedback signal as a function of the detection signal.
    Type: Application
    Filed: October 28, 2010
    Publication date: January 19, 2012
    Applicant: AMLOGIC CO., LTD.
    Inventors: Weicheng Zhang, Ming Shi, Wei-Hua Zou, Shu-Sun Yu, Chieh-Yuan Chao
  • Patent number: 8081013
    Abstract: A method for digital phase detection, comprises the steps of: providing a reference clock; receiving a feedback clock; determining a timing difference between the reference clock and the feedback clock; determining a polarity that indicates the leading or lagging relationship between the reference clock and the feedback clock; adaptively selecting one of at least two operating modes for generating a quantized level indicative of the timing difference, wherein in a first operating mode the quantized level is a constant maximum value and wherein in a second operating mode the quantized level is proportional to the timing difference; and generating a digital phase detection output as a combination of the polarity and the quantized level.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: December 20, 2011
    Assignee: Amlogic Co., Ltd.
    Inventors: Weicheng Zhang, Ming Shi, Wei-Hua Zou, Shu-Sun Yu, Chieh-Yuan Chao
  • Patent number: 7227401
    Abstract: A bias current generating circuit generates a reliable and consistent bias current, irrespective of variation in applied power, process and temperature. In one embodiment, the bias current generator generates a bias current using a PTAT current generator and an IPTAT current generator comprising exclusively active circuit elements, for example transistors. No passive elements, such as resistors, are employed. The generated bias current is substantially a function of the respective aspect ratios of transistors of current paths of the device. In this manner, the resulting generated bias current has greatly reduced susceptibility to variation in applied power, process and temperature.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: June 5, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Weicheng Zhang, Seunghoon Lee
  • Publication number: 20060103455
    Abstract: A bias current generating circuit generates a reliable and consistent bias current, irrespective of variation in applied power, process and temperature. In one embodiment, the bias current generator generates a bias current using a PTAT current generator and an IPTAT current generator comprising exclusively active circuit elements, for example transistors. No passive elements, such as resistors, are employed. The generated bias current is substantially a function of the respective aspect ratios of transistors of current paths of the device. In this manner, the resulting generated bias current has greatly reduced susceptibility to variation in applied power, process and temperature.
    Type: Application
    Filed: August 31, 2005
    Publication date: May 18, 2006
    Inventors: Weicheng Zhang, Seunghoon Lee