Patents by Inventor Weimin Zeng

Weimin Zeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220208523
    Abstract: A gas injection assembly for injecting gas into a processing chamber is provided. In some examples, the gas injection assembly can include an inlet for receiving a gas flow. The gas injection assembly can include a plurality of gas feed ports for distributing the gas flow received from the inlet. The gas injection assembly can include a plurality of subchannels vertically arranged inside of the gas injection assembly, including: an upper subchannel for receiving the gas flow from the inlet and subdividing the gas flow into a set of orifices to form a first gas flow branch and a second gas flow branch, the first gas flow branch corresponding to a first portion of the gas flow passing through a first subset of the set of orifices and the second gas flow branch corresponding to a second portion of the gas flow passing through a second subset of the set of orifices; and a plurality of outlet subchannels for subdividing the gas flow into the plurality of gas feed ports.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 30, 2022
    Inventors: Maolin Long, Weimin Zeng
  • Patent number: 11313034
    Abstract: In some embodiments, a method of processing a substrate disposed atop a substrate support in a physical vapor deposition process chamber includes: (a) forming a plasma from a process gas within a processing region of the physical vapor deposition chamber, wherein the process gas comprises an inert gas and a hydrogen-containing gas to sputter silicon from a surface of a target within the processing region of the physical vapor deposition chamber; and (b) depositing an amorphous silicon layer atop a first layer on the substrate, wherein adjusting the flow rate of the hydrogen containing gas tunes the optical properties of the deposited amorphous silicon layer.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 26, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Weimin Zeng, Yong Cao, Daniel Lee Diehl, Huixiong Dai, Khoi Phan, Christopher Ngai, Rongjun Wang, Xianmin Tang
  • Publication number: 20220101484
    Abstract: The present application provides a method for storing an image frame in a memory, including: receiving the image frame; dividing the image frame into M rows of data block rows along a first direction; dividing each of the M rows of data block rows into N data blocks along a second direction perpendicular to the first direction; performing a compression operation upon each of the M*N data blocks individually to generate M*N compressed data blocks; and storing N compressed data blocks corresponding to the 1st data block row of the M data block rows and N compressed data blocks corresponding to the (P+1)th data block row of the M data block rows in a continuous storage space in the memory, wherein M, N, and P are integers, and M>1, N>0 and P<M.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Inventors: WEIMIN ZENG, JENG-SHIOU LAI
  • Publication number: 20210337192
    Abstract: An image processing method includes: determining a first block and a second block corresponding to a current block; dividing each of the current block, the first block and the second block into a plurality of clusters; for a cluster having a corresponding location within each of the current block, the first block and the second block, performing gradient calculations on pixel values within the cluster of the first block and pixel values within the cluster of the second block, and accordingly determining an adjustment value, wherein a window size of the cluster used in the gradient calculations is one or zero; and for a pixel within the cluster of the current block, referring to a pixel value of the pixel of the first block, a pixel value of the pixel of the second block and the adjustment value to calculate a pixel value of the pixel of the current block.
    Type: Application
    Filed: April 24, 2020
    Publication date: October 28, 2021
    Inventors: Weimin Zeng, Chi-Wang Chai, Wujun Chen, Jing Wang, Rong Zhang
  • Patent number: 11051013
    Abstract: A selection module for selecting an intra mode comprises a histogram of oriented gradient (HOG) module, for receiving a coding unit (CU), to select four angular modes from 33 angular modes of the CU, a DC mode of the CU and a planar mode of the CU; and a decision module, couple to the HOG module, for receiving the six modes from the HOG module, to compare the six modes according to a Split Sum of Absolute Transformed Difference (SSATD) algorithm, to select one of the six modes.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: June 29, 2021
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chi-Wang Chai, Weimin Zeng, Wujun Chen, Jing Wang, Wei Pu
  • Publication number: 20210144368
    Abstract: A selection module for selecting an intra mode comprises a histogram of oriented gradient (HOG) module, for receiving a coding unit (CU), to select four angular modes from 33 angular modes of the CU, a DC mode of the CU and a planar mode of the CU; and a decision module, couple to the HOG module, for receiving the six modes from the HOG module, to compare the six modes according to a Split Sum of Absolute Transformed Difference (SSATD) algorithm, to select one of the six modes.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: Chi-Wang Chai, Weimin Zeng, Wujun Chen, Jing Wang, Wei Pu
  • Patent number: 10991579
    Abstract: The present disclosure generally relates to tin oxide films prepared by physical vapor deposition using a doped tin target. The semiconductor film may include tin and oxygen, and may be formed in a PVD chamber including a silicon doped tin target. Additionally, the semiconductor film may be smooth compared to similarly formed films without a doped target. The semiconductor film may be deposited by applying an electrical bias to a sputtering silicon doped tin target including the silicon in an amount of 0.5 to 5% by atomic weight of the total target. The semiconductor film has a smooth surface morphology compared to similarly formed tin oxide films formed without a doped target.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: April 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Weimin Zeng, Yong Cao
  • Patent number: 10972767
    Abstract: A transmitter for handling multiple formats of a video sequence, comprises a preprocessing module, for receiving a first format of a video sequence, to generate metadata of a second format of the video sequence according to the first format of the video sequence and the second format of the video sequence; and an encoder, couple to the preprocessing module, for transmitting the first format of the video sequence and the metadata in a bit stream to a receiver.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: April 6, 2021
    Assignee: Realtek Semiconductor Corp.
    Inventors: Lingzhi Liu, Li Liu, Jing Wang, Wujun Chen, Qingxi He, Wei Pu, Weimin Zeng, Chi-Wang Chai
  • Patent number: 10886155
    Abstract: A method and apparatus for forming an optical stack having uniform and accurate layers is provided. A processing tool used to form the optical stack comprises, within an enclosed environment, a first transfer chamber, an on-board metrology unit, and a second transfer chamber. A first plurality of processing chambers is coupled to the first transfer chamber or the second transfer chamber. The on-board metrology unit is disposed between the first transfer chamber and the second transfer chamber. The on-board metrology unit is configured to measure one or more optical properties of the individual layers of the optical stack without exposing the layers to an ambient environment.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: January 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Zihao Yang, Nag B. Patibandla, Daniel Lee Diehl, Yong Cao, Weimin Zeng, Renjing Zheng, Edward Budiarto, Surender Kumar Gurusamy, Todd Egan, Niranjan R. Khasgiwale
  • Patent number: 10886113
    Abstract: Embodiments of process kits for process chambers and methods for processing a substrate are provided herein. In some embodiments, a process kit includes a non-conductive upper shield having an upper portion to surround a sputtering target and a lower portion extending downward from the upper portion; and a conductive lower shield disposed radially outward of the non-conductive upper shield and having a cylindrical body with an upper portion and a lower portion, a lower wall projecting radially inward from the lower portion, and a lip protruding upward from the lower wall. The cylindrical body is spaced apart from the non-conductive upper shield by a first gap. The lower wall is spaced apart from the lower portion of the non-conductive upper shield by a second gap to limit a direct line of sight between a volume within the non-conductive upper shield and the cylindrical body of the conductive lower shield.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: January 5, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Thanh X. Nguyen, Weimin Zeng, Yong Cao
  • Publication number: 20200243305
    Abstract: A plasma process apparatus is provided. The plasma processing apparatus includes a plasma chamber and a processing chamber. The processing chamber includes a substrate holder operable to support a substrate. The plasma processing apparatus further includes a separation grid separating the plasma chamber from the processing chamber. The separation grid includes a gas delivery system. The gas delivery system defines a channel, an inlet and a plurality of outlets in fluid communication with the inlet via the channel. The gas delivery system is configured to reduce non-uniformities associated with a treatment process performed on the substrate.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 30, 2020
    Inventors: Weimin Zeng, Chun Yan, Dixit V. Desai, Hua Chung, Michael X. Yang, Peter Lembesis, Ryan M. Pakulski, Martin Zucker
  • Publication number: 20200227294
    Abstract: A method and apparatus for forming an optical stack having uniform and accurate layers is provided. A processing tool used to form the optical stack comprises, within an enclosed environment, a first transfer chamber, an on-board metrology unit, and a second transfer chamber. A first plurality of processing chambers is coupled to the first transfer chamber or the second transfer chamber. The on-board metrology unit is disposed between the first transfer chamber and the second transfer chamber. The on-board metrology unit is configured to measure one or more optical properties of the individual layers of the optical stack without exposing the layers to an ambient environment.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 16, 2020
    Inventors: Mingwei ZHU, Zihao YANG, Nag B. PATIBANDLA, Daniel DIEHL, Yong CAO, Weimin ZENG, Renjing ZHENG, Edward BUDIARTO, Surender Kumar GURUSAMY, Todd EGAN, Niranjan R. KHASGIWALE
  • Publication number: 20190341248
    Abstract: The present disclosure generally relates to tin oxide films prepared by physical vapor deposition using a doped tin target. The semiconductor film may include tin and oxygen, and may be formed in a PVD chamber including a silicon doped tin target. Additionally, the semiconductor film may be smooth compared to similarly formed films without a doped target. The semiconductor film may be deposited by applying an electrical bias to a sputtering silicon doped tin target including the silicon in an amount of 0.5 to 5% by atomic weight of the total target. The semiconductor film has a smooth surface morphology compared to similarly formed tin oxide films formed without a doped target.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 7, 2019
    Inventors: WEIMIN ZENG, YONG CAO
  • Publication number: 20190212656
    Abstract: Methods for depositing an EUV hardmask film on a substrate by physical vapor deposition which allow for reduced EUV dose. Certain embodiments relate to metal oxide hardmasks which require smaller amounts of EUV energy for processing and allow for higher throughput. A silicon or metal target can be sputtered onto a substrate in the presence of an oxygen and or doping gas containing plasma.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 11, 2019
    Inventors: Huixiong Dai, Weimin Zeng, Daniel Lee Diehl, Yong Cao, Hsiang Ning Wu, Khoi Phan, Christopher S. Ngai, Mingwei Zhu, Michael Stolfi, Nelson M. Felix, Ekmini Anuja DeSilva, Xianmin Tang
  • Publication number: 20190132617
    Abstract: A transmitter for handling multiple formats of a video sequence, comprises a preprocessing module, for receiving a first format of a video sequence, to generate metadata of a second format of the video sequence according to the first format of the video sequence and the second format of the video sequence; and an encoder, couple to the preprocessing module, for transmitting the first format of the video sequence and the metadata in a bit stream to a receiver.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 2, 2019
    Inventors: Lingzhi Liu, Li Liu, Jing Wang, Wujun Chen, Qingxi He, Wei Pu, Weimin Zeng, Chi-Wang Chai
  • Publication number: 20180151337
    Abstract: Embodiments of process kits for process chambers and methods for processing a substrate are provided herein. In some embodiments, a process kit includes a non-conductive upper shield having an upper portion to surround a sputtering target and a lower portion extending downward from the upper portion; and a conductive lower shield disposed radially outward of the non-conductive upper shield and having a cylindrical body with an upper portion and a lower portion, a lower wall projecting radially inward from the lower portion, and a lip protruding upward from the lower wall. The cylindrical body is spaced apart from the non-conductive upper shield by a first gap. The lower wall is spaced apart from the lower portion of the non-conductive upper shield by a second gap to limit a direct line of sight between a volume within the non-conductive upper shield and the cylindrical body of the conductive lower shield.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 31, 2018
    Inventors: THANH X. NGUYEN, WEIMIN ZENG, YONG CAO
  • Publication number: 20180142343
    Abstract: In some embodiments, a method of processing a substrate disposed atop a substrate support in a physical vapor deposition process chamber includes: (a) forming a plasma from a process gas within a processing region of the physical vapor deposition chamber, wherein the process gas comprises an inert gas and a hydrogen-containing gas to sputter silicon from a surface of a target within the processing region of the physical vapor deposition chamber; and (b) depositing an amorphous silicon layer atop a first layer on the substrate, wherein adjusting the flow rate of the hydrogen containing gas tunes the optical properties of the deposited amorphous silicon layer.
    Type: Application
    Filed: November 16, 2017
    Publication date: May 24, 2018
    Inventors: Weimin ZENG, Yong CAO, Daniel Lee DIEHL, Huixiong DAI, Khoi PHAN, Christopher NGAI, Rongjun WANG, Xianmin TANG
  • Publication number: 20180135183
    Abstract: Processing methods comprising depositing an initial hardmask film on a substrate by physical vapor deposition and exposing the initial hardmask film to a treatment plasma comprising a silane compound to form the hardmask.
    Type: Application
    Filed: November 8, 2017
    Publication date: May 17, 2018
    Inventors: Weimin Zeng, Yong Cao, Daniel Lee Diehl, Khoi Phan, Huixiong Dai, Christopher S. Ngai
  • Patent number: 9773665
    Abstract: Methods and apparatus for reducing particles generated in a process carried out in a process chamber are provided herein. In some embodiments, a process kit shield includes: a body having a surface facing a processing volume of a physical vapor deposition (PVD) process chamber, wherein the body is composed of aluminum oxide (Al2O3), and a silicon nitride layer on the surface of the body.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: September 26, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Weimin Zeng, Thanh X. Nguyen, Yong Cao
  • Patent number: 9633839
    Abstract: In some embodiments a method of processing a substrate disposed atop a substrate support in a physical vapor deposition process chamber includes: (a) depositing a dielectric layer to a first thickness atop a first surface of the substrate via a physical vapor deposition process; (b) providing a first plasma forming gas to a processing region of the physical vapor deposition process chamber, wherein the first plasma forming gas comprises hydrogen but not carbon; (c) providing a first amount of bias power to a substrate support to form a first plasma from the first plasma forming gas within the processing region of the physical vapor deposition process chamber; (d) exposing the dielectric layer to the first plasma; and (e) repeating (a)-(d) to deposit the dielectric film to a final thickness.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 25, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Weimin Zeng, Thanh X. Nguyen, Yana Cheng, Yong Cao, Daniel Lee Diehl, Srinivas Guggilla, Rongjun Wang, Xianmin Tang