Patents by Inventor Wen Chin Lin

Wen Chin Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12183379
    Abstract: A method to control a memory cell in a memory device, where the memory cell includes a switch, a memory element, and a negative resistance device coupled in series, the method includes: determine whether the memory cell is in a read operation or not; during the read operation in the memory cell, apply a read voltage greater than a predetermined threshold voltage of the negative resistance device for making the negative resistance device entering into a negative resistance state. A memory device that includes a memory cell array is also provided.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: December 31, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Chin Lin, Hung-Chang Yu
  • Publication number: 20230086858
    Abstract: A method to control a memory cell in a memory device, where the memory cell includes a switch, a memory element, and a negative resistance device coupled in series, the method includes: determine whether the memory cell is in a read operation or not; during the read operation in the memory cell, apply a read voltage greater than a predetermined threshold voltage of the negative resistance device for making the negative resistance device entering into a negative resistance state. A memory device that includes a memory cell array is also provided.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Chin Lin, Hung-Chang Yu
  • Patent number: 11532341
    Abstract: A method to control a memory cell in a memory device, where the memory cell includes a switch, a memory element, and a negative resistance device coupled in series, the method includes: determine whether the memory cell is in a read operation or not; during the read operation in the memory cell, apply a read voltage greater than a predetermined threshold voltage of the negative resistance device for making the negative resistance device entering into a negative resistance state. A memory device that includes a memory cell array is also provided.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Chin Lin, Hung-Chang Yu
  • Patent number: 11482666
    Abstract: A semiconductor substrate is provided. The semiconductor substrate has thereon a first dielectric layer, at least one conductive pattern disposed in the first dielectric layer, and a second dielectric layer covering the first dielectric layer and the at least one conductive pattern. A via opening is formed in the second dielectric layer. The via opening exposes a portion of the at least one conductive pattern. A polish stop layer is conformally deposited on the second dielectric layer and within the via opening. A barrier layer is conformally deposited on the polish stop layer. A tungsten layer is conformally deposited on the barrier layer. The tungsten layer and the barrier layer are polished until the polish stop layer on the second dielectric layer is exposed, thereby forming a via plug in the via opening. A bottom electrode layer is conformally deposited on the second dielectric layer and the via plug.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: October 25, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Jung Liu, Chau-Chung Hou, Ang Chan, Kun-Ju Li, Wen-Chin Lin
  • Publication number: 20220085284
    Abstract: A semiconductor substrate is provided. The semiconductor substrate has thereon a first dielectric layer, at least one conductive pattern disposed in the first dielectric layer, and a second dielectric layer covering the first dielectric layer and the at least one conductive pattern. A via opening is formed in the second dielectric layer. The via opening exposes a portion of the at least one conductive pattern. A polish stop layer is conformally deposited on the second dielectric layer and within the via opening. A barrier layer is conformally deposited on the polish stop layer. A tungsten layer is conformally deposited on the barrier layer. The tungsten layer and the barrier layer are polished until the polish stop layer on the second dielectric layer is exposed, thereby forming a via plug in the via opening. A bottom electrode layer is conformally deposited on the second dielectric layer and the via plug.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 17, 2022
    Inventors: Hsin-Jung Liu, Chau-Chung Hou, Ang Chan, Kun-Ju Li, Wen-Chin Lin
  • Publication number: 20220013158
    Abstract: A magnetoresistive random access memory (MRAM) includes a plurality of input/output units. Each input/output units can read and write memory cells simultaneously. So a read/write column to column delay time (tCCD) of the MRAM is equal to or shorter than a read/write column to column delay time of a dynamic random access memory (DRAM). Consequently, a data-rate of the MRAM is equal to or shorter than a data-rate of the DRAM.
    Type: Application
    Filed: September 17, 2020
    Publication date: January 13, 2022
    Inventors: MING SHENG TUNG, WEN CHIN LIN
  • Patent number: 11222677
    Abstract: A magnetoresistive random access memory (MRAM) includes a plurality of input/output units. Each input/output units can read and write memory cells simultaneously. So a read/write column to column delay time (tCCD) of the MRAM is equal to or shorter than a read/write column to column delay time of a dynamic random access memory (DRAM). Consequently, a data-rate of the MRAM is equal to or shorter than a data-rate of the DRAM.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: January 11, 2022
    Assignee: NS Poles Technology Corp.
    Inventors: Ming Sheng Tung, Wen Chin Lin
  • Publication number: 20210273076
    Abstract: A method of forming a gate includes the following steps. A gate structure is formed on a substrate. An etch stop layer is formed on the gate structure and the substrate. A dielectric layer is formed to cover the etch stop layer. The dielectric layer is planarized to form a planarized top surface of the dielectric layer and expose a portion of the etch stop layer on the gate structure. An oxygen containing treatment is performed to form an oxygen containing layer on the exposed etch stop layer. A deposition process is performed to form an oxide layer covering the planarized top surface of the dielectric layer and the oxygen containing layer.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 2, 2021
    Inventors: Yang-Ju Lu, Chun-Yi Wang, Fu-Shou Tsai, Yong-Yi Lin, Ching-Yang Chuang, Wen-Chin Lin, Hsin-Kuo Hsu
  • Publication number: 20210249062
    Abstract: A method to control a memory cell in a memory device, where the memory cell includes a switch, a memory element, and a negative resistance device coupled in series, the method includes: determine whether the memory cell is in a read operation or not; during the read operation in the memory cell, apply a read voltage greater than a predetermined threshold voltage of the negative resistance device for making the negative resistance device entering into a negative resistance state. A memory device that includes a memory cell array is also provided.
    Type: Application
    Filed: April 29, 2021
    Publication date: August 12, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Chin Lin, Hung-Chang Yu
  • Patent number: 10998024
    Abstract: A method to control a memory cell in a memory device, where the memory cell includes a switch, a memory element and a negative resistance device coupled in series, the method includes: determine whether the memory cell is in a read operation or not; during the read operation in the memory cell, apply a read voltage greater than a predetermined threshold voltage of the negative resistance device for making the negative resistance device entering into a negative resistance state. A memory device that includes a memory cell array is also provided.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: May 4, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Chin Lin, Hung-Chang Yu
  • Patent number: 10943910
    Abstract: A semiconductor IC structure includes a substrate including at least a memory cell region and a peripheral region defined thereon, a plurality of memory cells formed in the memory cell region, at least an active device formed in the peripheral region, a plurality of contact plugs formed in the memory cell region, and at least a bit line formed in the memory cell region. The contact plugs are physically and electrically connected to the bit line. More important, bottom surfaces of the contact plugs are lower a surface of the substrate.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: March 9, 2021
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Yu-Ting Li, Jen-Chieh Lin, Wen-Chin Lin, Po-Cheng Huang, Fu-Shou Tsai
  • Patent number: 10923481
    Abstract: A semiconductor IC structure includes a substrate including at least a memory cell region and a peripheral region defined thereon, a plurality of memory cells formed in the memory cell region, at least an active device formed in the peripheral region, a plurality of contact plugs formed in the memory cell region, and at least a bit line formed in the memory cell region. The contact plugs are physically and electrically connected to the bit line. More important, bottom surfaces of the contact plugs are lower a surface of the substrate.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: February 16, 2021
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Yu-Ting Li, Jen-Chieh Lin, Wen-Chin Lin, Po-Cheng Huang, Fu-Shou Tsai
  • Publication number: 20210035621
    Abstract: A method to control a memory cell in a memory device, where the memory cell includes a switch, a memory element and a negative resistance device coupled in series, the method includes: determine whether the memory cell is in a read operation or not; during the read operation in the memory cell, apply a read voltage greater than a predetermined threshold voltage of the negative resistance device for making the negative resistance device entering into a negative resistance state. A memory device that includes a memory cell array is also provided.
    Type: Application
    Filed: March 2, 2020
    Publication date: February 4, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Chin Lin, Hung-Chang Yu
  • Patent number: 10753917
    Abstract: A hydrogen sensing device includes a multi-layered structure member. The multi-layered structure member includes a stack of alternatingly disposed magnetic layers and non-ferromagnetic layers. One of the magnetic layers is a topmost layer of the multi-layered structure member. The topmost layer includes a palladium-based material to detect hydrogen.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: August 25, 2020
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Yuan-Chieh Tseng, Jaw-Yeu Liang, Yun-Chieh Pai, Yu-Jung Chou, Wen-Chin Lin, Chih-Huang Lai
  • Patent number: 10734276
    Abstract: A planarization method is provided and includes the following steps. A substrate having a main surface is provided. A protruding structure is formed on the main surface. An insulating layer is formed conformally covering the main surface and the top surface and the sidewall of the protruding structure. A stop layer is formed on the insulating layer and at least covers the top surface of the protruding structure. A first dielectric layer is formed blanketly covering the substrate and the protruding structure and a chemical mechanical polishing process is then performed to remove a portion of the first dielectric layer until a portion of the stop layer is exposed thereby obtaining an upper surface. A second dielectric layer having a pre-determined thickness is formed covering the upper surface.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: August 4, 2020
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Po-Cheng Huang, Yu-Ting Li, Fu-Shou Tsai, Wen-Chin Lin, Chun-Liang Liu
  • Patent number: 10276367
    Abstract: A method for improving wafer surface uniformity is disclosed. A wafer including a first region and a second region is provided. The first region and the second region have different pattern densities. A conductive layer is formed on the wafer. A buffer layer is then formed on the conductive layer. The buffer layer is polished until the conductive layer is exposed. A portion of the conductive layer and the remaining buffer layer are etched away.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: April 30, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Jen-Chieh Lin, Wen-Chin Lin, Yu-Ting Li
  • Patent number: 10262869
    Abstract: A planarization method includes providing a substrate having a semiconductor structure formed thereon. A dielectric layer is formed on the substrate, and a mask layer is formed on the dielectric layer. A first chemical mechanical polishing process is performed to remove a portion of the mask layer thereby forming an opening directly over the semiconductor structure and exposing the dielectric layer. A first etching process is performed to anisotropically remove a portion of the dielectric layer from the opening. The mask layer is then removed and a second chemical mechanical polishing process is then performed.
    Type: Grant
    Filed: February 25, 2018
    Date of Patent: April 16, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Jen-Chieh Lin, Lee-Yuan Chen, Wen-Chin Lin, Chi-Lune Huang, Pi-Hung Chuang, Tai-Lin Chen, Sun-Hong Chen
  • Patent number: 10249357
    Abstract: A semiconductor device includes a substrate having a memory region and a peripheral region defined thereon, wherein the peripheral region comprises at least one transistor, the memory region comprises a plurality of memory cells, each memory cell comprises at least one gate structure and a capacitor structure, a mask layer disposed on the capacitor structure in the memory region, and a dielectric layer disposed on the substrate within the peripheral region, wherein a top surface of the dielectric layer is aligned with a top surface of the mask layer.
    Type: Grant
    Filed: November 23, 2017
    Date of Patent: April 2, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Wen-Chin Lin, Jhih-Yuan Chen, Syue-Ren Wu, Meng-Hsun Wu
  • Publication number: 20190043866
    Abstract: A semiconductor IC structure includes a substrate including at least a memory cell region and a peripheral region defined thereon, a plurality of memory cells formed in the memory cell region, at least an active device formed in the peripheral region, a plurality of contact plugs formed in the memory cell region, and at least a bit line formed in the memory cell region. The contact plugs are physically and electrically connected to the bit line. More important, bottom surfaces of the contact plugs are lower a surface of the substrate.
    Type: Application
    Filed: October 3, 2018
    Publication date: February 7, 2019
    Inventors: Yu-Ting Li, Jen-Chieh Lin, Wen-Chin Lin, Po-Cheng Huang, Fu-Shou Tsai
  • Publication number: 20190035794
    Abstract: A semiconductor IC structure includes a substrate including at least a memory cell region and a peripheral region defined thereon, a plurality of memory cells formed in the memory cell region, at least an active device formed in the peripheral region, a plurality of contact plugs formed in the memory cell region, and at least a bit line formed in the memory cell region. The contact plugs are physically and electrically connected to the bit line. More important, bottom surfaces of the contact plugs are lower a surface of the substrate.
    Type: Application
    Filed: October 3, 2018
    Publication date: January 31, 2019
    Inventors: Yu-Ting Li, Jen-Chieh Lin, Wen-Chin Lin, Po-Cheng Huang, Fu-Shou Tsai