Patents by Inventor Wen-Han Hung
Wen-Han Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7655987Abstract: A metal-oxide-semiconductor (MOS) transistor device is disclosed. The MOS transistor device comprises a semiconductor substrate; a gate structure on the semiconductor substrate; source/drain regions on the semiconductor substrate adjacent to the gate structure; an ultra-high tensile-stressed nitride film having a hydrogen concentration of less than 1E22 atoms/cm3 covering the gate structure and the source/drain regions; and an inter-layer dielectric (ILD) film over the ultra-high tensile-stressed nitride film.Type: GrantFiled: January 14, 2008Date of Patent: February 2, 2010Assignee: United Microelectronics Corp.Inventors: Neng-Kuo Chen, Teng-Chun Tsai, Chien-Chung Huang, Tsai-Fu Chen, Wen-Han Hung
-
Patent number: 7642166Abstract: A method of manufacturing a MOS transistor device is provided. First, a semiconductor substrate having a gate structure is prepared. The gate structure has two sidewalls and a liner on the sidewalls. Subsequently, a stressed cap layer is formed on the semiconductor substrate, and covers the gate structure and the liner. Next, an activating process is performed. Furthermore, the stressed cap layer is etched to be a salicide block. Afterward, a salicide process is performed to form a silicide layer on the regions that are not covered by the stressed cap layer.Type: GrantFiled: November 6, 2008Date of Patent: January 5, 2010Assignee: United Microelectronics Corp.Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Neng-Kuo Chen, Shao-Ta Hsu, Teng-Chun Tsai, Chien-Chung Huang
-
Patent number: 7622344Abstract: A method for manufacturing CMOS transistors includes an etching back process alternatively performed after the gate structure formation, the lightly doped drain formation, source/drain implantation, or SEG process to etch a hard mask layer covering and protecting a first type gate structure, and to reduce thickness deviation between the hard masks covering the first type gate structure and a second type gate structure. Therefore the damage to spacers, STIs, and the profile of the gate structures due to the thickness deviation is prevented.Type: GrantFiled: July 17, 2007Date of Patent: November 24, 2009Assignee: United Microelectronics Corp.Inventors: Chia-Wen Liang, Cheng-Tung Huang, Shyh-Fann Ting, Chih-Chiang Wu, Shih-Chieh Hsu, Li-Shian Jeng, Kun-Hsien Lee, Meng-Yi Wu, Wen-Han Hung, Tzyy-Ming Cheng
-
Patent number: 7618856Abstract: A semiconductor substrate having a first active region and a second active region for fabricating a first transistor and a second transistor is provided. A first gate structure and a second gate structure are formed on the first active region and the second active region and a first spacer is formed surrounding the first gate structure and the second gate structure. A source/drain region for the first transistor and the second transistor is formed. The first spacer is removed from the first gate structure and the second gate structure and a cap layer is disposed on the first transistor and the second transistor and the cap layer covering the second transistor is removed thereafter. An etching process is performed to form a recess in the substrate surrounding the second gate structure. An epitaxial layer is formed in the recess and the cap layer is removed from the first transistor.Type: GrantFiled: December 5, 2006Date of Patent: November 17, 2009Assignee: United Microelectronics Corp.Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Jing-Chang Wu, Kun-Hsien Lee, Wen-Han Hung, Li-Shian Jeng, Tzer-Min Shen, Tzyy-Ming Cheng, Nien-Chung Li
-
Patent number: 7601587Abstract: A method of forming a metal-oxide-semiconductor (MOS) device is provided. The method includes the following steps. First, a conductive type MOS transistor is formed on a substrate. Then, a first etching stop layer is formed over the substrate to cover conformably the conductive type MOS transistor. Thereafter, a stress layer is formed over the first etching stop layer. Then, a second etching stop layer is formed over the stress layer.Type: GrantFiled: October 25, 2007Date of Patent: October 13, 2009Assignee: United Microelectronics Corp.Inventors: Pei-Yu Chou, Min-Chieh Yang, Wen-Han Hung
-
Publication number: 20090246922Abstract: A method of forming CMOS transistor is disclosed. A CMOS transistor having a first active area and a second active area is provided. In order to maintain the concentration of the dopants in the second active area, according to the method of the present invention an ion implantation process is performed to form a lightly doped drain (LDD) in the second active area after an epitaxial layer is formed in the first active area. On the other hand, the ion implantation process is performed to form the respective LDD of the first active area and the second active area. After the epitaxial layer in the first active area is formed, another ion implantation process is performed to implant dopants into the LDD of the second active area again.Type: ApplicationFiled: March 27, 2008Publication date: October 1, 2009Inventors: Meng-Yi Wu, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Kun-Hsien Lee, Li-Shian Jeng, Shih-Jung Tu, Yu-Ming Lin, Yao-Chin Cheng
-
Publication number: 20090239347Abstract: The present invention provides a method for forming a metal-oxide-semiconductor (MOS) device. The method includes at least the steps of forming a silicon germanium layer by the selective epitaxy growth process and forming a cap layer on the silicon germanium layer by the selective growth process. Hence, the undesirable effects caused by ion implantation can be mitigated.Type: ApplicationFiled: May 20, 2009Publication date: September 24, 2009Applicant: United Microelectronics Corp.Inventors: SHYH-FANN TING, Shih-Chieh Hsu, Cheng-Tung Huang, Chih-Chiang Wu, Wen-Han Hung, Meng-Yi Wu, Li-Shian Jeng, Chung-Min Shih, Kun-Hsien Lee, Tzyy-Ming Cheng
-
Publication number: 20090224328Abstract: A semiconductor device includes a substrate defining an active area thereon, a shallow trench isolation on the substrate and directly surrounding the active area, a gate, a source and a drain on the active area and a hard mask on the border of the shallow trench isolation and the active area.Type: ApplicationFiled: March 4, 2008Publication date: September 10, 2009Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Kun-Hsien Lee, Wen-Han Hung, Meng-Yi Wu, Li-Shian Jeng, Chung-Min Shih, Tzyy-Ming Cheng, Jing-Chang Wu, Tzer-Min Shen
-
Patent number: 7585790Abstract: A method of forming a semiconductor device. The method comprises steps of providing a substrate having a first transistor, a second transistor and non-salicide device formed thereon and the conductive type of the first transistor is different from that of the second transistor. A buffer layer is formed over the substrate and a tensile material layer is formed over the buffer layer. A portion of the tensile material layer over the second transistor is thinned and a spike annealing process is performed. The tensile material layer is removed to expose the buffer layer over the substrate and a patterned salicide blocking layer is formed over the non-salicide device. A salicide process is performed for forming a salicide layer on a portion of the first transistor and the second transistor.Type: GrantFiled: July 20, 2006Date of Patent: September 8, 2009Assignee: United Microelectronics Corp.Inventors: Wen-Han Hung, Cheng-Tung Huang, Kun-Hsien Lee, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Chia-Wen Liang, Neng-Kuo Chen
-
Patent number: 7582520Abstract: A method of fabricating a metal-oxide-semiconductor transistor is provided. A first gate structure and a second gate structure are formed on a substrate. The first gate structure has a dimension greater than the second gate structure. Then, first lightly doped drain regions are formed in the substrate on two sides of the first gate structure. A lightly doped drain annealing process is performed. Next, second lightly doped drain regions are formed in the substrate on two sides of the second gate structure. First spacers are formed on the sidewalls of the first gate structure and second spacers are formed on the sidewalls of the second gate structure at the same time. Afterwards, first source/drain regions are formed in the substrate on two sides of the first spacers and second source/drain regions are formed in the substrate on two sides of the second spacers. A source/drain annealing process is performed.Type: GrantFiled: July 19, 2006Date of Patent: September 1, 2009Assignee: United Microelectronics Corp.Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Li-Shian Jeng, Wen-Han Hung, Shyh-Fann Ting, Jing-Yi Huang, Tzyy-Ming Cheng, Chia-Wen Liang
-
Publication number: 20090186475Abstract: A method of manufacturing a MOS transistor, in which, a tri-layer photo resist layer is used to form a patterned hard mask layer having a sound shape and a small size, and the patterned hard mask layer is used to form a gate. Thereafter, by forming and defining a cap layer, a recess is formed through etching in the substrate. The patterned hard mask is removed after epitaxial layers are formed in the recesses. Accordingly, a conventional poly bump issue and an STI oxide loss issue leading to contact bridge can be avoided.Type: ApplicationFiled: January 21, 2008Publication date: July 23, 2009Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Shih-Chieh Hsu, Chih-Chiang Wu, Meng-Yi Wu, Li-Shian Jeng, Chung-Min Shih, Kun-Hsien Lee, Wen-Han Hung, Yao-Chin Cheng, Chi-Sheng Tseng, Yu-Ming Lin, Shih-Jung Tu, Tzyy-Ming Cheng
-
Publication number: 20090166625Abstract: The present invention provides a method for forming a metal-oxide-semiconductor (MOS) device and the structure thereof. The method includes at least the steps of forming a silicon germanium layer by the first selective epitaxy growth process and forming a cap layer on the silicon germanium layer by the second selective epitaxy growth process. Hence, the undesirable effects caused by ion implantation can be mitigated.Type: ApplicationFiled: December 28, 2007Publication date: July 2, 2009Applicant: UNITED MICROELECTRONICS CORP.Inventors: Shyh-Fann Ting, Shih-Chieh Hsu, Cheng-Tung Huang, Chih-Chiang Wu, Wen-Han Hung, Meng-Yi Wu, Li-Shian Jeng, Chung-Min Shih, Kun-Hsien Lee, Tzyy-Ming Cheng
-
Publication number: 20090137089Abstract: A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A gate dielectric layer is formed on an active area of a substrate. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A nitride spacer is formed on the liner. An ion implanted is performed to form a source/drain region. After salicide process, an STI region that isolates the active area is recessed, thereby forming a step height at interface between the active area and the STI region. The nitride spacer is removed. A nitride cap layer that borders the liner is deposited. The nitride cap layer has a specific stress status.Type: ApplicationFiled: February 5, 2009Publication date: May 28, 2009Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Tzyy-Ming Cheng, Tzer-Min Shen, Yi-Chung Sheng
-
Publication number: 20090117701Abstract: A method for manufacturing a MOS transistor includes performing a thermal treatment to repair damaged substrate before forming source/drain extension regions, accordingly negative bias temperature instability (NBTI) is reduced. Since the thermal treatment is performed before forming the source/drain extension regions, heat budget for forming the source/drain extension regions and junction depth and junction profile of the source/drain extension would not be affected. Therefore the provided method for manufacturing a MOS transistor is capable of reducing short channel effect and possesses a superior process compatibility.Type: ApplicationFiled: November 1, 2007Publication date: May 7, 2009Inventors: Meng-Yi Wu, Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Chung-Min Shih, Yao-Chin Cheng, Tzyy-Ming Cheng
-
Patent number: 7524716Abstract: A semiconductor structure is disclosed, including a substrate having therein a first well of a first conductivity type and a second well of a second conductivity type, a first MOS transistor of the first conductivity type and a second MOS transistor of the second conductivity type. The first MOS transistor is disposed on the second well, including a gate structure on the second well and a strained layer of the first conductivity type in an opening in the second well beside the gate structure. The difference between the cell parameter of a portion of the strained layer near the bottom of the opening and that of the substrate is less than the difference between the cell parameter of a portion of the strained layer apart from the bottom of the opening and that of the substrate. The second MOS transistor is disposed on the first well.Type: GrantFiled: May 30, 2007Date of Patent: April 28, 2009Assignee: United Microelectronics Corp.Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Li-Shian Jeng, Kun-Hsien Lee, Tzyy-Ming Cheng, Jing-Chang Wu, Tzermin Shen
-
Patent number: 7508053Abstract: A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A gate dielectric layer is formed on an active area of a substrate. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A nitride spacer is formed on the liner. An ion implanted is performed to form a source/drain region. After salicide process, an STI region that isolates the active area is recessed, thereby forming a step height at interface between the active area and the STI region. The nitride spacer is removed. A nitride cap layer that borders the liner is deposited. The nitride cap layer has a specific stress status.Type: GrantFiled: October 29, 2007Date of Patent: March 24, 2009Assignee: United Microelectronics Corp.Inventors: Shyh-Fann Ting, Cheng-Tung Huang, Wen-Han Hung, Tzyy-Ming Cheng, Tzer-Min Shen, Yi-Chung Sheng
-
Publication number: 20090068805Abstract: A method of manufacturing a MOS transistor device is provided. First, a semiconductor substrate having a gate structure is prepared. The gate structure has two sidewalls and a liner on the sidewalls. Subsequently, a stressed cap layer is formed on the semiconductor substrate, and covers the gate structure and the liner. Next, an activating process is performed. Furthermore, the stressed cap layer is etched to be a salicide block. Afterward, a salicide process is performed to form a silicide layer on the regions that are not covered by the stressed cap layer.Type: ApplicationFiled: November 6, 2008Publication date: March 12, 2009Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Neng-Kuo Chen, Shao-Ta Hsu, Teng-Chun Tsai, Chien-Chung Huang
-
Patent number: 7494878Abstract: A method of manufacturing a MOS transistor device. First, a semiconductor substrate having a gate structure is prepared. The gate structure has two sidewalls and a liner on the sidewalls. Subsequently, a stressed cap layer is formed on the semiconductor substrate, and covers the gate structure and the liner. Next, an activating process is performed. Furthermore, the stressed cap layer is etched to be a salicide block. Afterward, a salicide process is performed to form a silicide layer on the regions that are not covered by the stressed cap layer.Type: GrantFiled: October 25, 2006Date of Patent: February 24, 2009Assignee: United Microelectronics Corp.Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Neng-Kuo Chen, Shao-Ta Hsu, Teng-Chun Tsai, Chien-Chung Huang
-
Patent number: 7485517Abstract: A method for fabricating a semiconductor device is provided. First, a substrate is provided, and a first-type MOS (metallic oxide semiconductor) transistor, an input/output (I/O) second-type MOS transistor, and a core second-type MOS transistor are formed on the substrate. Then, a first stress layer is formed to overlay the substrate, the first-type MOS transistor, the I/O second-type MOS transistor, and the core second-type MOS transistor. Then, at least the first stress layer on the core second-type MOS transistor is removed to reserve at least the first stress layer on the first-type MOS transistor. Finally, a second stress layer is formed on the core second-type MOS transistor.Type: GrantFiled: April 7, 2006Date of Patent: February 3, 2009Assignee: United Microelectronics Corp.Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Chia-Wen Liang
-
Publication number: 20090023258Abstract: A method for manufacturing CMOS transistors includes an etching back process alternatively performed after the gate structure formation, the lightly doped drain formation, source/drain implantation, or SEG process to etch a hard mask layer covering and protecting a first type gate structure, and to reduce thickness deviation between the hard masks covering the first type gate structure and a second type gate structure. Therefore the damage to spacers, STIs, and the profile of the gate structures due to the thickness deviation is prevented.Type: ApplicationFiled: July 17, 2007Publication date: January 22, 2009Inventors: Chia-Wen Liang, Cheng-Tung Huang, Shyh-Fann Ting, Chih-Chiang Wu, Shih-Chieh Hsu, Li-Shian Jeng, Kun-Hsien Lee, Meng-Yi Wu, Wen-Han Hung, Tzyy-Ming Cheng