Patents by Inventor Wen-Hsien Tseng
Wen-Hsien Tseng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8482701Abstract: The present invention provides a polymer stabilization alignment liquid crystal display panel having a plurality of pixel regions. Each pixel region includes a main region and a sub region, and a first pixel electrode and a second pixel electrode correspond to the main region and the sub region respectively. Each first pixel electrode is separated from the adjacent data line and thereby forming a gap therebetween. Each second pixel electrode partially overlaps the adjacent data line. In addition, each second pixel electrode includes a plurality of branches, and at least one edge of the branches may be parallel to the data lines. Accordingly, the present invention not only can increase the aperture ratio, but also well control the liquid crystal molecules located near the data lines. Therefore, the display quality of the liquid crystal display panel can be improved.Type: GrantFiled: June 29, 2010Date of Patent: July 9, 2013Assignee: Au Optronics Corp.Inventors: Chin-An Tseng, Chia-Yu Lee, Yen-Heng Huang, Wen-Hsien Tseng, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng, Ting-Yi Cho
-
Publication number: 20130113695Abstract: A display device includes a first panel and a second panel stacked together. The first panel includes a first active region, a first peripheral region, a first substrate, a second substrate, a display medium, a pixel array integrated with a color filter film, a common electrode, and a first light shielding layer. The second panel includes a second active region, a second peripheral region, a third substrate, an element layer, and a second light shielding layer disposed in the second peripheral region. The first light shielding layer includes first light shielding patterns leaning against the pixel array and the common electrode and second light shielding patterns forming a black matrix in the first active region. The second light shielding patterns are shorter than the first light shielding patterns. The second active region is smaller than, the first active region. The second peripheral region is larger than the first peripheral region.Type: ApplicationFiled: April 11, 2012Publication date: May 9, 2013Applicant: Au Optronics CorporationInventors: Wen-Hsien Tseng, Yen-Heng Huang, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng, Ming-Yung Huang
-
Patent number: 8421961Abstract: An active device array substrate including a substrate, a plurality of scan lines, a plurality of data lines, a plurality of active devices, a first passivation layer, a transparent pad layer, a plurality of color filter patterns, a second passivation layer, a plurality of pixel electrodes, and a black matrix layer is provided. Each of the active devices is electrically connected to one of the scan lines and one of the data lines, respectively. The transparent pad layer having a plurality of openings for accommodating the color filter patterns is disposed on the first passivation layer located above the scan lines and the data lines. The first passivation layer, the color filter patterns and the second passivation layer have a plurality of contact windows therein. The black matrix layer is disposed above the transparent pad layer to cover a portion of the pixel electrodes.Type: GrantFiled: March 26, 2010Date of Patent: April 16, 2013Assignee: Au Optronics CorporationInventors: Wen-Hsien Tseng, Yen-Heng Huang, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng, Wen-Chuan Chen
-
Patent number: 8405807Abstract: A liquid crystal display including an active device array substrate, an opposite substrate disposed above the active device array substrate, a liquid crystal layer disposed between the active device array substrate and the opposite substrate, and spacers is provided. The active device array substrate includes a substrate, pixels, a first dielectric layer and color filter patterns. Each pixel includes a first active device, a first pixel electrode and a capacitor electrode. The capacitor electrode and the first pixel electrode constitute a storage capacitor. The first dielectric layer covers the first active device. The color filter patterns are disposed on the first dielectric layer. Each of the color filter patterns has a first opening disposed above the capacitor electrode to expose the first dielectric layer above the capacitor electrode. Each first pixel electrode is respectively disposed on one of the color filters and within the corresponding first opening.Type: GrantFiled: February 9, 2010Date of Patent: March 26, 2013Assignee: Au Optronics CorporationInventors: Ting-Yi Cho, Chin-An Tseng, Yen-Heng Huang, Chia-Hui Pai, Wen-Hsien Tseng, Chung-Kai Chen, Chung-Yi Chiu
-
Patent number: 8334940Abstract: A display panel including a first substrate, scan lines, data lines, sub-pixel units, a light-shielding layer, a second substrate, and a display medium is provided. Each of the sub-pixel units includes a main display unit and a sub-display unit. The main display unit includes a first switch and a first pixel electrode, wherein the first pixel electrode and the data lines adjacent thereto are separated from each other with a gap (G1). The sub-display unit includes a second switch and a second pixel electrode, wherein the second and the data lines adjacent thereto are overlapped with a first overlapping width (W1). The light-shielding layer is disposed between two adjacent first pixel electrodes such that the light-shielding layer and one of the first pixel electrodes adjacent thereto are overlapped with a second overlapping width (W2). Additionally, the display medium is display between the first substrate and the second substrate.Type: GrantFiled: January 26, 2010Date of Patent: December 18, 2012Assignee: Au Optronics CorporationInventors: Wen-Hsien Tseng, Yen-Heng Huang, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng, Chin-An Tseng, Chia-Yu Lee, Ting-Yi Cho
-
Patent number: 8284353Abstract: A display panel having a display region and a non-display region is provided. The display panel includes a first substrate, a second substrate and a display medium between the first substrate and the second substrate. The substrate has a pixel array, a plurality of lead lines, an organic layer and a conductive pattern thereon. The pixel array is disposed within the display region. The lead lines are disposed within the non-display region and electrically connected to the pixel array. The organic layer covers the pixel array and the lead lines. The conductive pattern is disposed on the organic layer in the lead lines. The second substrate has an electrode layer thereon, and the electrode layer is disposed within the display region and the non-display region. In particular, the electrode layer and the conductive pattern are electrically connected to a common voltage.Type: GrantFiled: December 15, 2009Date of Patent: October 9, 2012Assignee: Au Optronics CorporationInventors: Yen-Heng Huang, Chung-Kai Chen, Chia-Hui Pai, Wei-Yuan Cheng, Wen-Hsien Tseng, Ting-Yi Cho, Chin-An Tseng
-
Publication number: 20120138963Abstract: A pixel structure includes a substrate, a scan line, a first data line, a second data line, a first active device, a second active device, a first pixel electrode, and a second pixel electrode. The substrate has a first unit area and a second unit area. The first pixel electrode is disposed in the first unit area and includes a first main portion and first branch portions extending from the first main portion to an edge of the first unit area. The second pixel electrode is disposed in the second unit area and includes a second main portion and second branch portions extending from the second main portion to an edge of the second unit area, wherein at least a part of the first branch portions and at least a part of the second branch portions are asymmetrically arranged at two sides of the second data line.Type: ApplicationFiled: February 24, 2011Publication date: June 7, 2012Applicant: AU OPTRONICS CORPORATIONInventors: Wen-Hsien Tseng, Sheng-Ju Ho, Yen-Heng Huang, Cheng-Han Tsao, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng, Yi-Jen Huang, Chung-Yi Chiu, Kung-Ching Chu
-
Publication number: 20120038601Abstract: A method of repairing a pixel structure is provided. In the method, the pixel structure on a substrate is provided and includes a scan line, a data line, an active device, an insulating layer, and a pixel electrode. The scan line and the data line are located on the substrate. The active device is located on the substrate and electrically connected to the scan line and the data line. The insulating layer covers the scan line, the data line, and the active device and has a contact opening. The pixel electrode is located on the insulating layer and fills the contact opening to electrically connect the active device. A laser removing process is performed to remove the pixel electrode in the contact opening, such that the pixel electrode is electrically insulated from the active device.Type: ApplicationFiled: November 19, 2010Publication date: February 16, 2012Applicant: AU OPTRONICS CORPORATIONInventors: Yi-Jen Huang, Yen-Heng Huang, Wen-Hsien Tseng, Chung-Kai Chen, Chia-Hui Pai, Wei-Yuan Cheng
-
Patent number: 8094275Abstract: An active device array substrate includes a substrate, scan and data lines defining pixel regions, active devices, pads, color filter layers, and pixel electrodes. The active devices respectively correspond to the pixel regions and electrically connect the corresponding scan lines and data lines. The pads disposed within the corresponding pixel regions connect the active devices. The color filter layers covering the pixel regions are disposed on the active devices and the pads. Each color filter layer has an opening exposing the corresponding pad and having a polygonal shape. The pixel electrodes are located on the color filter layers in the pixel regions. Each pixel electrode connects the pad downward via the corresponding opening and has parallel fine slits having a first extension direction. An included angle between the first extension direction and an extension direction of a first side of the opening is ?1, and 60°??1?90°.Type: GrantFiled: March 15, 2010Date of Patent: January 10, 2012Assignee: Au Optronics CorporationInventors: Wen-Hsien Tseng, Yen-Heng Huang, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng
-
Publication number: 20110317103Abstract: A liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, pixel regions, pixel electrodes and color filters. Each pixel region at least includes a main pixel region and a sub pixel region. Each pixel electrode is disposed on the first substrate. Each pixel electrode includes a first electrode disposed in the main pixel region and a second electrode disposed in the sub pixel region. Each color filter is disposed between the first substrate and the second substrate and corresponds to each pixel region. Each color filter includes a curved surface facing the liquid crystal layer and an extreme thickness position. When a predetermined voltage is applied to each pixel electrode, aligning directions of the liquid crystal molecules disposed above the first electrode are converged toward a center. The extreme thickness position substantially overlaps the center in a vertical projection direction.Type: ApplicationFiled: December 22, 2010Publication date: December 29, 2011Inventors: Wen-Hsien Tseng, Yen-Heng Huang, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng, Yi-Jen Huang
-
Publication number: 20110304805Abstract: A liquid crystal display (LCD) panel includes an active device array substrate, an opposite substrate, a sealant, a liquid crystal layer, a black matrix, and a plurality of rough structures. The active device array substrate has a display area and a peripheral area surrounding the display area, and the liquid crystal layer and the peripheral area are surrounded by the sealant. The black matrix is disposed between the active device array substrate and the opposite substrate and distributed corresponding to the display area and the peripheral area. The rough structures are disposed on a portion of the black matrix and distributed corresponding to the peripheral area. Surface roughness of the rough structures is greater than surface roughness of the black matrix distributed corresponding to the display area.Type: ApplicationFiled: November 19, 2010Publication date: December 15, 2011Applicant: AU OPTRONICS CORPORATIONInventors: Wen-Hsien Tseng, Yen-Heng Huang, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng, Yi-Jen Huang, Chun-Jen Chiu, Yu-Zhi Wu, Yuan-Nan Chiu
-
Publication number: 20110149183Abstract: A liquid crystal display including an active device array substrate, an opposite substrate disposed above the active device array substrate, a liquid crystal layer disposed between the active device array substrate and the opposite substrate, and spacers is provided. The active device array substrate includes a substrate, pixels, a first dielectric layer and color filter patterns. Each pixel includes a first active device, a first pixel electrode and a capacitor electrode. The capacitor electrode and the first pixel electrode constitute a storage capacitor. The first dielectric layer covers the first active device. The color filter patterns are disposed on the first dielectric layer. Each of the color filter patterns has a first opening disposed above the capacitor electrode to expose the first dielectric layer above the capacitor electrode. Each first pixel electrode is respectively disposed on one of the color filters and within the corresponding first opening.Type: ApplicationFiled: February 9, 2010Publication date: June 23, 2011Applicant: AU OPTRONICS CORPORATIONInventors: Ting-Yi Cho, Chin-An Tseng, Yen-Heng Huang, Chia-Hui Pai, Wen-Hsien Tseng, Chung-Kai Chen, Chung-Yi Chiu
-
Publication number: 20110149224Abstract: The present invention provides a polymer stabilization alignment liquid crystal display panel having a plurality of pixel regions. Each pixel region includes a main region and a sub region, and a first pixel electrode and a second pixel electrode correspond to the main region and the sub region respectively. Each first pixel electrode is separated from the adjacent data line and thereby forming a gap therebetween. Each second pixel electrode partially overlaps the adjacent data line. In addition, each second pixel electrode includes a plurality of branches, and at least one edge of the branches may be parallel to the data lines. Accordingly, the present invention not only can increase the aperture ratio, but also well control the liquid crystal molecules located near the data lines. Therefore, the display quality of the liquid crystal display panel can be improved.Type: ApplicationFiled: June 29, 2010Publication date: June 23, 2011Inventors: Chin-An TSENG, Chia-Yu LEE, Yen-Heng HUANG, Wen-Hsien TSENG, Chia-Hui PAI, Chung-Kai CHEN, Wei-Yuan CHENG, Ting-Yi CHO
-
Publication number: 20110141423Abstract: A pixel structure including a substrate, a scan line, a first data line and a first pixel unit is provided. The scan line and the first data line are disposed on the substrate. The first pixel unit includes a first active device and a first pixel electrode. The first active device is electrically connected to the scan line and the first data line. The first pixel electrode electrically connected to the first active device has a first stripe pattern and a plurality of first branches. One side of the first stripe pattern is connected to the first branches extended toward the scan line, and the other side of the first stripe pattern is overlapped with the scan line. The overlapped width of the first stripe pattern with the scan line is substantially equal to 40% to 90% of the width of the first stripe pattern.Type: ApplicationFiled: April 11, 2010Publication date: June 16, 2011Applicant: AU OPTRONICS CORPORATIONInventors: Wei-Yuan Cheng, Chin-An Tseng, Yen-Heng Huang, Chia-Hui Pai, Chung-Kai Chen, Wen-Hsien Tseng, Ting-Yi Cho, Chia-Yu Lee
-
Publication number: 20110128280Abstract: A display panel including a first substrate, scan lines, data lines, sub-pixel units, a light-shielding layer, a second substrate, and a display medium is provided. Each of the sub-pixel units includes a main display unit and a sub-display unit. The main display unit includes a first switch and a first pixel electrode, wherein the first pixel electrode and the data lines adjacent thereto are separated from each other with a gap (G1). The sub-display unit includes a second switch and a second pixel electrode, wherein the second and the data lines adjacent thereto are overlapped with a first overlapping width (W1). The light-shielding layer is disposed between two adjacent first pixel electrodes such that the light-shielding layer and one of the first pixel electrodes adjacent thereto are overlapped with a second overlapping width (W2). Additionally, the display medium is display between the first substrate and the second substrate.Type: ApplicationFiled: January 26, 2010Publication date: June 2, 2011Applicant: AU OPTRONICS CORPORATIONInventors: Wen-Hsien Tseng, Yen-Heng Huang, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng, Chin-An Tseng, Chia-Yu Lee, Ting-Yi Cho
-
Publication number: 20110122345Abstract: An active device array substrate includes a substrate, scan and data lines defining pixel regions, active devices, pads, color filter layers, and pixel electrodes. The active devices respectively correspond to the pixel regions and electrically connect the corresponding scan lines and data lines. The pads disposed within the corresponding pixel regions connect the active devices. The color filter layers covering the pixel regions are disposed on the active devices and the pads. Each color filter layer has an opening exposing the corresponding pad and having a polygonal shape. The pixel electrodes are located on the color filter layers in the pixel regions. Each pixel electrode connects the pad downward via the corresponding opening and has parallel fine slits having a first extension direction. An included angle between the first extension direction and an extension direction of a first side of the opening is ?1, and 60°??1?90°.Type: ApplicationFiled: March 15, 2010Publication date: May 26, 2011Applicant: AU OPTRONICS CORPORATIONInventors: Wen-Hsien Tseng, Yen-Heng Huang, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng
-
Publication number: 20110084289Abstract: An active device array substrate including a substrate, a plurality of scan lines, a plurality of data lines, a plurality of active devices, a first passivation layer, a transparent pad layer, a plurality of color filter patterns, a second passivation layer, a plurality of pixel electrodes, and a black matrix layer is provided. Each of the active devices is electrically connected to one of the scan lines and one of the data lines, respectively. The transparent pad layer having a plurality of openings for accommodating the color filter patterns is disposed on the first passivation layer located above the scan lines and the data lines. The first passivation layer, the color filter patterns and the second passivation layer have a plurality of contact windows therein. The black matrix layer is disposed above the transparent pad layer to cover a portion of the pixel electrodes.Type: ApplicationFiled: March 26, 2010Publication date: April 14, 2011Applicant: AU OPTRONICS CORPORATIONInventors: Wen-Hsien Tseng, Yen-Heng Huang, Chia-Hui Pai, Chung-Kai Chen, Wei-Yuan Cheng, Wen-Chuan Chen
-
Publication number: 20110003069Abstract: A fabrication method of a nanomaterial by using a polymeric nanoporous template is disclosed. First, a block copolymer bulk is made from a block copolymer polymerized from decomposable and undecomposable monomers. By removing the decomposable portion of the block copolymer bulk, the polymeric nanoporous template with a plurality of holes is obtained, and these holes have nanostructures with regular arrangement. By exploiting a nanoreactor concept, a sol-gel process or an electrochemical synthesis, for example, is then carried out within the template such that the holes are filled with various filler materials, such as ceramics, metals and polymers, so as to prepare a nanocomposite material having the nanostructure. After removing the polymeric nanoporous template, the nanomaterial with the nanostructure is manufactured.Type: ApplicationFiled: December 29, 2009Publication date: January 6, 2011Applicant: NATIONAL TSING HUA UNIVERSITYInventors: Rong-Ming Ho, Han-Yu Hsueh, Ming-Shiuan She, Wen-Hsien Tseng, Chun-Ku Chen, Yeo-Wan Chiang
-
Publication number: 20100328586Abstract: A display panel having a display region and a non-display region is provided. The display panel includes a first substrate, a second substrate and a display medium between the first substrate and the second substrate. The substrate has a pixel array, a plurality of lead lines, an organic layer and a conductive pattern thereon. The pixel array is disposed within the display region. The lead lines are disposed within the non-display region and electrically connected to the pixel array. The organic layer covers the pixel array and the lead lines. The conductive pattern is disposed on the organic layer in the lead lines. The second substrate has an electrode layer thereon, and the electrode layer is disposed within the display region and the non-display region. In particular, the electrode layer and the conductive pattern are electrically connected to a common voltage.Type: ApplicationFiled: December 15, 2009Publication date: December 30, 2010Applicant: AU OPTRONICS CORPORATIONInventors: Yen-Heng Huang, Chung-Kai Chen, Chia-Hui Pai, Wei-Yuan Cheng, Wen-Hsien Tseng, Ting-Yi Cho, Chin-An Tseng
-
Patent number: 7632544Abstract: A nanopatterned template for use in manufacturing nanoscale objects. The nanopatterned template contains a nanoporous thin film with a periodically ordered porous geomorphology which is made from a process comprising the steps of: (a) using a block copolymerization process to prepare a block copolymer comprising first and second polymer blocks, the first and second polymer blocks being incompatible with each other; (b) forming a thin film under conditions such that the first polymer blocks form into a periodically ordered topology; and (c) selectively degrading the first polymer blocks to cause the thin film to become a nanoporous material with a periodically ordered porous geomorphology. In a preferred embodiment, the block copolymer is poly(styrene)-poly(L-lactide) (PS-PLLA) chiral block copolymer, the first polymer is poly(L-lactide), and the second polymer is polystyrene.Type: GrantFiled: May 18, 2004Date of Patent: December 15, 2009Assignee: Industrial Technology Research InstituteInventors: Rong-Ming Ho, Hui-Wen Fan, Wen-Hsien Tseng, Yeo-Wan Chiang, Chu-Chien Lin, Bao-Tsan Ko, Bor-Hunn Huang, Hsi-Hsin Shih, Joung-Yei Chen