Patents by Inventor Wen Kai Lin

Wen Kai Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240387681
    Abstract: Semiconductor devices and methods of manufacture are presented in which spacers are manufactured on sidewalls of gates for semiconductor devices. In embodiments the spacers comprise a first seal, a second seal, and a contact etch stop layer, in which the first seal comprises a first shell along with a first bulk material, the second seal comprises a second shell along with a second bulk material, and the contact etch stop layer comprises a third bulk material and a second dielectric material.
    Type: Application
    Filed: July 29, 2024
    Publication date: November 21, 2024
    Inventors: Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu
  • Patent number: 12150066
    Abstract: A wireless transmission method includes obtaining an MCS (modulation and coding scheme) rate and a power amplifier gain of each station in a set of stations for a multi-user (MU) transmission, generating a maximum available MCS rate according to a plurality of MCS rates of the set of stations, selecting a power amplifier gain of the MU transmission according to the maximum available MCS rate, adjusting a digital gain of each station according to the power amplifier gain of the MU transmission and the power amplifier gain of each station, adjusting a frequency domain signal of each station according to the digital gain thereof, converting a plurality of adjusted frequency domain signals of the set of stations into a time domain signal, and generating an amplified signal for the MU transmission according to the power amplifier gain of the MU transmission and the time-domain signal.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: November 19, 2024
    Assignee: Realtek Semiconductor Corp.
    Inventors: Zh-Hong Xiao, Shau-Yu Cheng, Wen-Yung Lee, Chun-Kai Tseng, Jhe-Yi Lin
  • Patent number: 12142668
    Abstract: In an embodiment, a structure includes: a semiconductor substrate; a fin extending from the semiconductor substrate; a gate stack over the fin; an epitaxial source/drain region in the fin adjacent the gate stack; and a gate spacer disposed between the epitaxial source/drain region and the gate stack, the gate spacer including a plurality of silicon oxycarbonitride layers, each of the plurality of silicon oxycarbonitride layers having a different concentration of silicon, a different concentration of oxygen, a different concentration of carbon, and a different concentration of nitrogen.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: November 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chien-Chih Lin, Yen-Ting Chen, Wen-Kai Lin, Szu-Chi Yang, Shih-Hao Lin, Tsung-Hung Lee, Ming-Lung Cheng
  • Publication number: 20240340598
    Abstract: A MEMS structure is provided. The MEMS structure includes a substrate having an opening portion and a backplate disposed on one side of the substrate. The backplate comprises a backplate conductive layer and a backplate insulating layer stacked with each other. The MEMS structure also includes a diaphragm disposed between the substrate and the backplate and extending across the opening portion of the substrate. The MEMS structure further includes a pillar structure connected with the backplate. The pillar structure comprises a pillar conductive layer and a pillar insulating layer stacked with each other.
    Type: Application
    Filed: December 5, 2023
    Publication date: October 10, 2024
    Inventors: Chun-Kai MAO, Jien-Ming CHEN, Wen-Shan LIN, Nai-Hao KUO
  • Publication number: 20240332401
    Abstract: Embodiments include nanostructure devices and methods of forming nanostructure devices which include a treatment process to expand a sidewall spacer material to close a seam in the sidewall spacer material after deposition. The treatment process includes oxidation anneal and heat anneal to expand the sidewall spacer material and crosslink the open seam to form a closed seam, lower k-value, and decrease density.
    Type: Application
    Filed: June 13, 2024
    Publication date: October 3, 2024
    Inventors: Li-Chi Yu, Cheng-I Chu, Chen-Fong Tsai, Yi-Rui Chen, Sen-Hong Syue, Wen-Kai Lin, Yoh-Rong Liu, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 12101175
    Abstract: A wireless communication method for optimizing uplink transmission from a communication partner to a wireless communication device includes the following steps: after receiving an uplink performance estimation, determining uplink adjustment information including resource unit allocation and a target received signal strength indicator according to the uplink performance estimation; generating a target channel quality indicator (CQI) according to previous uplink sounding information and the uplink adjustment information, wherein the previous uplink sounding information indicates the characteristics of the uplink transmission; determining uplink transmission setting including a modulation and coding scheme and dual carrier modulation according to the target CQI and the type of an error correction technique and transmitting a control signal to a communication partner according to the uplink transmission setting; and updating the uplink performance estimation according to a reception signal from the communication
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: September 24, 2024
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Wen-Yung Lee, Shau-Yu Cheng, Jhe-Yi Lin, Chun-Kai Tseng, Wei-Hsuan Chang
  • Patent number: 12096183
    Abstract: A MEMS structure is provided. The MEMS structure includes a substrate having an opening portion and a backplate disposed on one side of the substrate and having acoustic holes. The MEMS structure also includes a diaphragm disposed between the substrate and the backplate and extending across the opening portion of the substrate. The diaphragm includes a ventilation hole, and an air gap is formed between the diaphragm and the backplate. The MEMS structure further includes a filler structure disposed on the diaphragm, and a portion of the filler structure is disposed in the ventilation hole.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: September 17, 2024
    Assignee: FORTEMEDIA, INC.
    Inventors: Chih-Yuan Chen, Feng-Chia Hsu, Chun-Kai Mao, Jien-Ming Chen, Wen-Shan Lin, Nai-Hao Kuo
  • Publication number: 20240297237
    Abstract: A method of forming a semiconductor device includes: forming a dummy gate structure over a nanostructure, where the nanostructure overlies a fin that protrudes above a substrate, where the nanostructure comprises alternating layers of a first semiconductor material and a second semiconductor material; forming openings in the nanostructure on opposing sides of the dummy gate structure, the openings exposing end portions of the first semiconductor material and end portions of the second semiconductor material; recessing the exposed end portions of the first semiconductor material to form first sidewall recesses; filling the first sidewall recesses with a multi-layer spacer film; removing at least one sublayer of the multi-layer spacer film to form second sidewall recesses; and forming source/drain regions in the openings after removing at least one sublayer, where the source/drain regions seal the second sidewall recesses to form sealed air gaps.
    Type: Application
    Filed: May 10, 2024
    Publication date: September 5, 2024
    Inventors: Wen-Kai Lin, Yung-Cheng Lu, Che-Hao Chang, Chi On Chui
  • Patent number: 12080775
    Abstract: A semiconductor device includes a plurality of nanostructures extending in a first direction above a semiconductor substrate and arranged in a second direction substantially perpendicular to the first direction and a gate structure extending in a third direction perpendicular to both the first and second directions, the gate structure surrounding each of the plurality of nano structures. Each of the plurality of nanostructures has an outer region having a composition different from a composition of an inner region of each of the plurality of the nanostructures. The gate structure includes a plurality of high-k gate dielectric layers respectively surrounding the plurality of nanostructures, a work function layer surrounding each of the plurality of high-k gate dielectric layers and a fill metal layer surrounding the work function layer.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: September 3, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Kai Lin, Shih-Chiang Chen, Po-Shao Lin, Wei-Yang Lee, Chia-Pin Lin, Yuan-Ching Peng
  • Publication number: 20240290656
    Abstract: A method includes forming a metal seed layer over a first conductive feature of a wafer, forming a patterned photo resist on the metal seed layer, forming a second conductive feature in an opening in the patterned photo resist, and heating the wafer to generate a gap between the second conductive feature and the patterned photo resist. A protection layer is plated on the second conductive feature. The method further includes removing the patterned photo resist, and etching the metal seed layer.
    Type: Application
    Filed: May 6, 2024
    Publication date: August 29, 2024
    Inventors: Ming-Da Cheng, Wen-Hsiung Lu, Chin Wei Kang, Yung-Han Chuang, Lung-Kai Mao, Yung-Sheng Lin
  • Patent number: 12040382
    Abstract: Embodiments include nanostructure devices and methods of forming nanostructure devices which include a treatment process to expand a sidewall spacer material to close a seam in the sidewall spacer material after deposition. The treatment process includes oxidation anneal and heat anneal to expand the sidewall spacer material and crosslink the open seam to form a closed seam, lower k-value, and decrease density.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Li-Chi Yu, Cheng-I Chu, Chen-Fong Tsai, Yi-Rui Chen, Sen-Hong Syue, Wen-Kai Lin, Yoh-Rong Liu, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20240194765
    Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.
    Type: Application
    Filed: January 29, 2024
    Publication date: June 13, 2024
    Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
  • Patent number: 12009407
    Abstract: A method of forming a semiconductor device includes: forming a dummy gate structure over a nanostructure, where the nanostructure overlies a fin that protrudes above a substrate, where the nanostructure comprises alternating layers of a first semiconductor material and a second semiconductor material; forming openings in the nanostructure on opposing sides of the dummy gate structure, the openings exposing end portions of the first semiconductor material and end portions of the second semiconductor material; recessing the exposed end portions of the first semiconductor material to form first sidewall recesses; filling the first sidewall recesses with a multi-layer spacer film; removing at least one sublayer of the multi-layer spacer film to form second sidewall recesses; and forming source/drain regions in the openings after removing at least one sublayer, where the source/drain regions seal the second sidewall recesses to form sealed air gaps.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: June 11, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Kai Lin, Yung-Cheng Lu, Che-Hao Chang, Chi On Chui
  • Publication number: 20240153812
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming a shallow trench isolation (STI) in a substrate, forming a first gate structure on the substrate and adjacent to the STI, forming a first doped region between the first gate structure and the STI, forming a second doped region between the first doped region and the first gate structure, forming a first contact plug on the first doped region, and then forming a second contact plug on the second doped region.
    Type: Application
    Filed: December 4, 2022
    Publication date: May 9, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Kai Lin, Chi-Horn Pai, Sheng-Yuan Hsueh, Kuo-Hsing Lee, Chih-Kai Kang
  • Publication number: 20240136428
    Abstract: Improved inner spacers for semiconductor devices and methods of forming the same are disclosed.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu
  • Publication number: 20240113202
    Abstract: Embodiments of the present disclosure relate to a FinFET device having gate spacers with reduced capacitance and methods for forming the FinFET device. Particularly, the FinFET device according to the present disclosure includes gate spacers formed by two or more depositions. The gate spacers are formed by depositing first and second materials at different times of processing to reduce parasitic capacitance between gate structures and contacts introduced after epitaxy growth of source/drain regions.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Wen-Kai Lin, Bo-Yu Lai, Li Chun Te, Kai-Hsuan Lee, Sai-Hooi Yeong, Tien-I Bao, Wei-Ken Lin
  • Patent number: 11923432
    Abstract: A method of manufacturing a semiconductor device includes forming a multi-layer stack of alternating first layers of a first semiconductor material and second layers of a second semiconductor material on a semiconductor substrate, forming a first recess through the multi-layer stack, and laterally recessing sidewalls of the second layers of the multi-layer stack. The sidewalls are adjacent to the first recess. The method further includes forming inner spacers with respective seams adjacent to the recessed second layers of the multi-layer stack and performing an anneal treatment on the inner spacers to close the respective seams.
    Type: Grant
    Filed: January 3, 2023
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yoh-Rong Liu, Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Li-Chi Yu, Sen-Hong Syue
  • Patent number: 11901439
    Abstract: Improved inner spacers for semiconductor devices and methods of forming the same are disclosed.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu
  • Patent number: D1045066
    Type: Grant
    Filed: October 14, 2022
    Date of Patent: October 1, 2024
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ching-Sung Lin, Chih-Kai Chen, Wen-Yang Yang, Yung-Lung Han, Chi-Feng Huang
  • Patent number: D1045067
    Type: Grant
    Filed: October 14, 2022
    Date of Patent: October 1, 2024
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ching-Sung Lin, Chih-Kai Chen, Wen-Yang Yang, Yung-Lung Han, Chi-Feng Huang