Patents by Inventor Wen Li

Wen Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200043695
    Abstract: A charged particle beam device includes a deflection unit that deflects a charged particle beam released from a charged particle source to irradiate a sample, a reflection plate that reflects secondary electrons generated from the sample, and a control unit that controls the deflection unit based on an image generated by detecting the secondary electrons reflected from the reflection plate. The deflection unit includes an electromagnetic deflection unit that electromagnetically scans with the charged particle beam by a magnetic field and an electrostatic deflection unit that electrostatically scans with the charged particle beam by an electric field. The control unit controls the electromagnetic deflection unit and the electrostatic deflection unit, superimposes an electromagnetic deflection vector generated by the electromagnetic scanning and an electrostatic deflection vector generated by the electrostatic scanning, and controls at least a trajectory of the charged particle beam.
    Type: Application
    Filed: March 6, 2017
    Publication date: February 6, 2020
    Inventors: Kazuki IKEDA, Wen LI, Takuma NISHIMOTO, Hiroyuki TAKAHASHI, Wataru MORI, Makoto SUZUKI, Hajime KAWANO
  • Publication number: 20200043809
    Abstract: Provided is a semiconductor device including a first fin-type field effect transistor (FinFET). The first FinFET includes a first gate structure over a first semiconductor fin and the first gate structure includes a first work function layer. The first work function layer includes a first layer and a second layer. The first layer has a bar-shaped structure, the second layer has a U-shaped structure encapsulating sidewalls and a bottom surface of the first layer, and the first layer and the second layer include different materials. A method of manufacturing the semiconductor device is also provided.
    Type: Application
    Filed: June 27, 2019
    Publication date: February 6, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Ching Huang, Cheng-Chien Li, Wen-Li Chiu
  • Publication number: 20200036396
    Abstract: Apparatuses and methods for pipelining memory operations with error correction coding are disclosed. A method for pipelining consecutive write mask operations is disclosed wherein a second read operation of a second write mask operation occurs during error correction code calculation of a first write mask operation. The method may further including writing data from the first write mask operation during the error correction code calculation of the second write mask operation. A method for pipelining consecutive operations is disclosed where a first read operation may be cancelled if the first operation is not a write mask operation. An apparatus including a memory having separate global read and write input-output lines is disclosed.
    Type: Application
    Filed: October 4, 2019
    Publication date: January 30, 2020
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Wei Bing Shang, Yu Zhang, Hong Wen Li, Yu Peng Fan, Zhong Lai Liu, En Peng Gao, Liang Zhang
  • Patent number: 10546718
    Abstract: Even in a case where a disturbance is applied from an adjacently disposed power supply circuit or the like, in order to realize a reduction in ripple, a high-voltage power supply device is configured to include a drive circuit, a transformer that boosts an output voltage of the drive circuit, a boost circuit that further boosts a voltage boosted by the transformer, a shield that covers the transformer and the boost circuit, a filter circuit that filters, smoothes, and outputs a high voltage output from the boost circuit, and an impedance loop circuit configured by connection of a plurality of impedance elements into a loop shape. A grounding point of the boost circuit, a grounding point of the shield, and a grounding point of the filter circuit are configured to be grounded via the impedance loop circuit, and this is applied to a high-voltage power supply unit that applies a high voltage to an electron gun of a charged particle beam apparatus.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: January 28, 2020
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takuma Nishimoto, Wen Li, Hiroyuki Takahashi, Hajime Kawano
  • Publication number: 20200020504
    Abstract: A charged-particle beam system comprises: a charged-particle beam device containing a detection unit for detecting electrons generated by irradiating a sample with a charged-particle beam released from a charged particle source; and a signal detection unit in which a detection signal from the detection unit is input through a wiring. The signal detection unit comprises: a separation unit for separating into a rising signal and a falling signal the detection signal from the detection unit; a falling signal processing unit for at least eliminating ringing in the falling signal; and a combination unit generating and delivering a combined signal produced by combining the rising signal, which has been separated by the separation unit, with the falling signal wherefrom the ringing has been eliminated by the falling signal processing unit.
    Type: Application
    Filed: March 27, 2017
    Publication date: January 16, 2020
    Inventors: Akio YAMAMOTO, Kazuki IKEDA, Wen LI, Hiroyuki TAKAHASHI, Shahedul HOQUE, Shunsuke MIZUTANI
  • Publication number: 20200015678
    Abstract: A pressure sensor system is provided. In another aspect, a wireless intraocular pressure sensor includes a deformable or stretchable inductor. A further aspect of an intraocular pressure sensing system includes a deformable inductor sized to contact an eye. Another aspect provides an organ pressure sending system including a passive inductor with a wavy, serpentine or undulating shape.
    Type: Application
    Filed: March 21, 2018
    Publication date: January 16, 2020
    Applicant: Board of Trustees of Michigan State University
    Inventors: Wen LI, Arthur J. WEBER, Mohammad Hossein Mazaheri KOUHANI
  • Patent number: 10529861
    Abstract: FinFET structures and methods of forming the same are disclosed. A device includes a semiconductor fin. A gate stack is on the semiconductor fin. The gate stack includes a gate dielectric on the semiconductor fin and a gate electrode on the gate dielectric. The gate electrode and the gate dielectric have top surfaces level with one another. A first inter-layer dielectric (ILD) is adjacent the gate stack over the semiconductor fin. The first ILD exerts a compressive strain on the gate stack.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: January 7, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Chang Lin, Wei-Ting Chien, Chun-Feng Nieh, Wen-Li Chiu, Huicheng Chang, Chun-Sheng Liang
  • Patent number: 10528366
    Abstract: Multi-inheritance within a single-inheritance, container-based data processing environment is provided for facilitating developing, storing, shipping and/or running software applications. More particularly, a facility is provided which includes generating, based on a configuration file with a multi-inheritance instruction, a composited image for a new container from multiple exiting images of the single-inheritance container-based environment. The multiple existing images are identified in the multi-inheritance instruction, and the generating includes creating a composited directory file which, in part, references layers of the multiple existing images and associating a command instruction of the configuration file with the composited file. The composited image is then built in associated with starting the new container based on the composited directory file and the associated command.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: January 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Hong Wong, Zong Lin He, Dan Qing Huang, Zi Wen Li
  • Publication number: 20200004556
    Abstract: Multi-inheritance within a single-inheritance, container-based data processing environment is provided for facilitating developing, storing, shipping and/or running software applications. More particularly, a facility is provided which includes generating, based on a configuration file with a multi-inheritance instruction, a composited image for a new container from multiple exiting images of the single-inheritance container-based environment. The multiple existing images are identified in the multi-inheritance instruction, and the generating includes creating a composited directory file which, in part, references layers of the multiple existing images and associating a command instruction of the configuration file with the composited file. The composited image is then built in associated with starting the new container based on the composited directory file and the associated command.
    Type: Application
    Filed: September 11, 2019
    Publication date: January 2, 2020
    Inventors: Chih-Hong WONG, Zong Lin HE, Dan Qing HUANG, Zi Wen LI
  • Publication number: 20190391536
    Abstract: Methods, systems, apparatuses, and computer program products are provided for enabling devices to determine the time zone in which they are located. A mobile device may receive location information from one or more sources. Based thereon, the current location of the mobile device may be determined in terms of latitude and longitude. The indication of the current location may be converted to an index value according to a Hilbert curve (or other space-filling curve), and the index value applied to a time zone index file to determine the local time zone. A time zone setting of the mobile device may be updated accordingly. Furthermore, “geofencing” may be used by the mobile device to detect movement towards and through a time zone boundary, leading to a new time zone determination being initiated.
    Type: Application
    Filed: September 6, 2019
    Publication date: December 26, 2019
    Inventors: Ronald S. Ruzicka, Ken M. Sadahiro, Axel Andrejs, Matthew D. Johnson, Gregory R. Slayden, Wen Li Looi
  • Patent number: 10509881
    Abstract: Implementations of the present disclosure provide coloring methods that sort and pre-color nodes of G0-linked networks in a multiple-patterning technology (MPT)-compliant layout design by coordinate. In one embodiment, a method includes identifying target networks in a circuit layout, each target network having two or more linked nodes representing circuit patterns, and each target network being presented in an imaginary X-Y coordinate plane, assigning a first feature to a first node in each target network, the first node is determined using a coordinate-based method, and assigning the first feature and a second feature to remaining nodes in each target network in an alternating manner so that any two immediately adjacent linked nodes in each target network have different features.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ping Chiang, Ming-Hui Chih, Chih-Wei Hsu, Ping-Chieh Wu, Ya-Ting Chang, Tsung-Yu Wang, Wen-Li Cheng, Hui En Yin, Wen-Chun Huang, Ru-Gun Liu, Tsai-Sheng Gau
  • Publication number: 20190378686
    Abstract: In a charged particle beam control device, irradiation accuracy of an electron beam can be prevented from deteriorating due to a variation in a ground potential.
    Type: Application
    Filed: June 11, 2019
    Publication date: December 12, 2019
    Inventors: Shinichi MURAKAMI, Wen LI, Hiroyuki TAKAHASHI, Masazumi TONE
  • Patent number: 10503124
    Abstract: Methods, systems, apparatuses, and computer program products are provided for enabling devices to determine the time zone in which they are located. A mobile device may receive location information from one or more sources. Based thereon, the current location of the mobile device may be determined in terms of latitude and longitude. The indication of the current location may be converted to an index value according to a Hilbert curve (or other space-filling curve), and the index value applied to a time zone index file to determine the local time zone. A time zone setting of the mobile device may be updated accordingly. Furthermore, “geofencing” may be used by the mobile device to detect movement towards and through a time zone boundary, leading to a new time zone determination being initiated.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: December 10, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ronald S. Ruzicka, Ken M. Sadahiro, Axel Andrejs, Matthew D. Johnson, Gregory R. Slayden, Wen Li Looi
  • Patent number: 10493733
    Abstract: This disclosure relates to films particularly suitable for stretch hood applications. More particularly, this disclosure relates to multi-layer films particularly suitable for stretch hood applications comprising an inner layer that includes a blend of a propylene-based elastomer and a polyethylene having long-chain branching.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: December 3, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul M. German, Jr., Wen Li, Jianya Cheng
  • Patent number: 10497557
    Abstract: The present disclosure relates to a method and apparatus for performing a dry plasma procedure, while mitigating internal contamination of a semiconductor substrate. In some embodiments, the apparatus includes a semiconductor processing tool having a dry process stage with one or more dry process elements that perform a dry plasma procedure on a semiconductor substrate received from an input port. A wafer transport system transports the semiconductor substrates from the dry process stage to a wet cleaning stage located downstream of the dry process stage. The wet cleaning stage has one or more wet cleaning elements that perform a wet cleaning procedure to remove contaminants from a surface of the semiconductor substrates before the semiconductor substrate is provided to an output port, thereby improving wafer manufacturing quality.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: December 3, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Yen Ku, Tsai-Pao Su, Wen-Chang Tsai, Chia-Wen Li, Yu-Yen Hsu
  • Patent number: 10483120
    Abstract: A method of fabricating an integrated circuit (IC) uses a first lithography technique having a first resolution and a second lithography technique having a second resolution lower than the first resolution. The method includes deriving a graph from an IC layout, the graph having vertices and edges that connect some of the vertices, the vertices representing IC patterns in the IC layout, the edges representing spacing between the IC patterns that are smaller than the second resolution. The method further includes classifying the edges into at least two types, a first type of edges representing spacing that is smaller than the first resolution, a second type of edges representing spacing that is equal to or greater than the first resolution but smaller than the second resolution.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: November 19, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ken-Hsien Hsieh, Wen-Li Cheng, Dong-Yo Jheng, Chih-Ming Lai, Ru-Gun Liu
  • Publication number: 20190349712
    Abstract: In one embodiment, a method includes: obtaining location information and motion information of a wireless communication apparatus, and a data set from one or more information sources external to the wireless communication apparatus; and organizing data of the data set for display, where the organizing is based on the location and motion information of the wireless communication apparatus. Methods of other embodiments may also include defining a search radius based on the location information and motion information of the wireless communication apparatus, and the organizing may also include filtering the data set from the one or more information sources to exclude data from information sources outside the defined search radius.
    Type: Application
    Filed: July 28, 2019
    Publication date: November 14, 2019
    Inventors: Si Bin FAN, Zhi Lin HU, Shi Wen LI, Zhang He YANG
  • Publication number: 20190341225
    Abstract: Provided is a charged particle beam device to enable determination of a noise source of a charged particle beam device that can cause a noise frequency component superimposed on a measurement image. The charged particle beam device includes a unit that extracts information regarding a noise source.
    Type: Application
    Filed: December 27, 2016
    Publication date: November 7, 2019
    Inventors: Takuma NISHIMOTO, Wen LI, Hiroyuki TAKAHASHI, Wataru MORI, Hajime KAWANO
  • Patent number: 10452030
    Abstract: Methods, systems, apparatuses, and computer program products are provided for enabling devices to determine the time zone in which they are located. A mobile device may receive location information from one or more sources. Based thereon, the current location of the mobile device may be determined in terms of latitude and longitude. The indication of the current location may be converted to an index value according to a Hilbert curve (or other space-filling curve), and the index value applied to a time zone index file to determine the local time zone. A time zone setting of the mobile device may be updated accordingly. Furthermore, “geofencing” may be used by the mobile device to detect movement towards and through a time zone boundary, leading to a new time zone determination being initiated.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: October 22, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ronald S. Ruzicka, Ken M. Sadahiro, Axel Andrejs, Matthew D. Johnson, Gregory R. Slayden, Wen Li Looi
  • Publication number: 20190318906
    Abstract: A low noise blanking unit corresponds to a wide range of acceleration voltages (from several times higher than related voltages to low acceleration voltages) of an electron beam. A blanking unit of the measurement and inspection device includes a blanking control circuit, in which (i) an upper and a lower blanking electrodes are arranged in the irradiation direction of an electron beam; electrodes on the reverse sides of two opposing electrodes in each of the blanking electrodes arranged in the same direction are connected with the ground, (ii) when blanking is ON, positive voltages are output to remaining electrodes of the upper blanking electrode and negative voltages are output to remaining electrodes of the lower blanking electrode, and (iii) when the blanking is OFF, the same ground reference signal is output to the remaining electrodes of the upper blanking electrode and to the remaining electrodes of the lower blanking electrode.
    Type: Application
    Filed: January 18, 2019
    Publication date: October 17, 2019
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Wen LI, Shinichi MURAKAMI, Hiroyuki TAKAHASHI, Yuko SASAKI, Minoru YAMAZAKI, Hajime KAWANO