Patents by Inventor Wen Tong

Wen Tong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10728839
    Abstract: A method of transmitting includes categorizing a transmission between the first device and a second device as one of a plurality of transmission types, and selecting an air interface from a plurality of air interface candidates in accordance with the transmission as categorized. The method also includes sending the transmission to the second device using the selected air interface.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: July 28, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jianglei Ma, Peiying Zhu, Ming Jia, Wen Tong
  • Publication number: 20200230343
    Abstract: A respiratory mask system includes a mask interface and a headgear assembly. The headgear assembly is adjustable and comprised of an elastic portion, a non-elastic portion and a restriction mechanism configured to provide a force resisting movement of the non-elastic portion when the elastic portion is extended. There is a support beam coupled to the non-elastic portion and extending along a portion of the headgear that is curved along its longitudinal extent. In this way particular seal modules can be comfortably fitted to a user and any blow off force is mitigated. A particular example of the respiratory mask system includes provision for removable attachment between the seal and a mask frame, the mask frame and a yoke of the headgear; and between a conduit and the mask frame.
    Type: Application
    Filed: June 26, 2018
    Publication date: July 23, 2020
    Inventors: Christopher Gareth SIMS, Fadi Karim Moh'd MASHAL, Vitaly KAPELEVICH, Mark Arvind MCLAREN, Silas Sao Jin SIEW, Jonathan Mark DOWNEY, Christopher Michael WONG, Matthew Aaron BRADLEY, Janine Elizabeth COLLINS, Dillan PATEL, Steve THOMAS, Chris Onin Limpin HIPOLITO, Priyanka Ferdinand PEREIRA, Matthew Robert Geoff SLIGHT, David Monroy FELIX, Xin Yue ZHU, Jonathan Tong Lok SNG, Arvin San Jose GARDIOLA, Stephen Francis HEFFERNAN, Christine Marie LYNCH, Wen Dong HUANG, Bruce Michael WALLS, Jeremy Owen YOUNG, Tony William SPEAR, Jake Baker HOCKING, Melissa Catherine BORNHOLDT
  • Patent number: 10721114
    Abstract: Methods and systems are disclosed for symbol sequence generation and transmission for non-orthogonal multiple access (NoMA) transmission. A NoMA signal may be generated based on: (1) a first symbol sequence, the first symbol sequence determined from a set of input bits and associated with a first MA signature within a first MA signature space; (2) a second symbol sequence determined based on the first symbol sequence, the second symbol sequence being associated with a second MA signature within a second MA signature space; and (3) a symbol-to-resource element mapping applied to the second symbol sequence to produce the NoMA signal.
    Type: Grant
    Filed: November 23, 2017
    Date of Patent: July 21, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Sanjeewa Herath, Alireza Bayesteh, Ming Jia, Jianglei Ma, Peiying Zhu, Wen Tong
  • Patent number: 10721681
    Abstract: A method of transmitting includes categorizing a transmission between the first device and a second device as one of a plurality of transmission types, and selecting an air interface from a plurality of air interface candidates in accordance with the transmission as categorized. The method also includes sending the transmission to the second device using the selected air interface.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: July 21, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jianglei Ma, Peiying Zhu, Ming Jia, Wen Tong
  • Publication number: 20200228175
    Abstract: Systems and methods for closed loop MIMO (multiple input and multiple output) wireless communication are provided. Various transmit formats including spatial multiplexing and STTD are defined in which vector or matrix weighting is employed using information fed back from receivers. The feedback information may include channel matrix or SVD-based feedback.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 16, 2020
    Inventors: Wen TONG, Ming JIA, Jianglei MA, Peiying ZHU, Hua XU, Dong-Sheng YU, Hang ZHANG, Mo-Han FONG
  • Patent number: 10701672
    Abstract: A mobile terminal in a wireless communication network may be one of several modes of operation. When in an idle mode, the mobile terminal may avoid a lengthy random access procedure normally associated with responding to a page from a base station, if the base station includes in the page an indication of a resource that the mobile terminal may utilize when responding to the page. Additionally, the mobile terminal may transmit an efficient location update MAC header to a base station, whether prompted to by a page from the base station or not. Furthermore, without leaving the idle mode or a sleep mode, the mobile terminal may exchange short data burst messages with a base station.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventors: Hang Zhang, Mo-Han Fong, Peiying Zhu, Wen Tong
  • Patent number: 10700808
    Abstract: Embodiment techniques map parity bits to sub-channels based on their row weights. In one example, an embodiment technique includes polar encoding, with an encoder of the device, information bits and at least one parity bit using the polar code to obtain encoded data, and transmitting the encoded data to another device. The polar code comprises a plurality of sub-channels. The at least one parity bit being placed in at least one of the plurality of sub-channels. The at least one sub-channel is selected from the plurality of sub-channels based on a weight parameter.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: June 30, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Huazi Zhang, Jiajie Tong, Rong Li, Jun Wang, Wen Tong, Yiqun Ge, Xiaocheng Liu, Gongzheng Zhang, Jian Wang, Nan Cheng, Qifan Zhang
  • Patent number: 10700905
    Abstract: A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Ming Jia, Wen Tong, Peiying Zhu, Hang Zhang, Hua Xu, Dongsheng Yu
  • Patent number: 10693535
    Abstract: A high-order Multiple-Input-Multiple-Output (MIMO) transmitter implementing a covariance-based precoding scheme that exploits transmit channel correlation and a method of operation thereof are provided. In one embodiment, covariance-based precoding is performed at the high-order MIMO transmitter based on feedback from a remote high-order MIMO receiver regarding a covariance-based precoding matrix. The covariance-based precoding matrix is, or is derived from, a transmit channel correlation matrix determined by the high-order MIMO receiver for the high-order MIMO transmitter. The covariance-based precoding provides a beam-forming effect when there is a relatively high degree of transmit channel correlation, thereby improving performance of the high-order MIMO transmitter. Further, because changes in the transmit channel correlation occur relatively slowly over time, feedback overhead requirements are substantially reduced as compared to that required for traditional MIMO precoding schemes.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: June 23, 2020
    Assignee: Apple Inc.
    Inventors: Ming Jia, Jianglei Ma, Peiying Zhu, Wen Tong
  • Patent number: 10693693
    Abstract: A method and apparatus are provided for reducing the number of pilot symbols within a MIMO-OFDM communication system, and for improving channel estimation within such a system. For each transmitting antenna in an OFDM transmitter, pilot symbols are encoded so as to be unique to the transmitting antenna. The encoded pilot symbols are then inserted into an OFDM frame to form a diamond lattice, the diamond lattices for the different transmitting antennae using the same frequencies but being offset from each other by a single symbol in the time domain. At the OFDM receiver, a channel response is estimated for a symbol central to each diamond of the diamond lattice using a two-dimensional interpolation. The estimated channel responses are smoothed in the frequency domain. The channel responses of remaining symbols are then estimated by interpolation in the frequency domain.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: June 23, 2020
    Assignee: BlackBerry Limited
    Inventors: Peiying Zhu, Wen Tong, Jianglei Ma, Ming Jia
  • Patent number: 10686512
    Abstract: Spatial multiplexing and transmit diversity can improve the capacity of a wireless communication system. The system and method adapts communication schemes for communication systems with multiple antennas utilizing at least two transmission modes. The at least two transmission modes can, but are not necessarily, used for uplink communications. The two transmission modes may be chosen from the group consisting of a single antenna mode, a diversity mode a spatial multiplexed mode and a mixed diversity and spatial multiplexed mode. The at least two transmission modes may involve adaptation among multiple transmitters. At least one receiver may indicate a transmission mode to be used by a transmitter for a subsequent transmission. A transmitter may determine a transmission mode to be used for a subsequent transmission. The transmission mode can be based on channel sounding.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: June 16, 2020
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Ming Jia, Jianming Wu, Peiying Zhu, Wen Tong, Evelyne Le Strat, Sarah Boumendil, Moussa Abdi
  • Patent number: 10680864
    Abstract: For a wireless communications system, scalable orthogonal frequency division multiplexing (OFDM) numerology is incorporated in a manner that can apply to radio link transmissions in future wireless network for frequency division duplex (FDD) and time division duplex (TDD) communications.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: June 9, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Liqing Zhang, Kelvin Kar Kin Au, Jianglei Ma, Wen Tong, Toufiqul Islam
  • Publication number: 20200177422
    Abstract: Methods and systems are provided that enable an OFDM transmitter to be used for transmitting conventional OFDM or a form of transformed OFDM. A technique is provided for transforming a coded and modulated sequence of samples prior to an IFFT that enables the transformed sequence of samples to be transmitted using conventional OFDM or transformed OFDM. The selection of a transform function for transforming the coded and modulated sequence of samples may be based on optimizing the transform function for particular operating conditions between the transmitter and receiver. In some embodiments of the invention OFDM and time transformed OFDM are multiplexed in time and/or frequency in a transmission frame. In some embodiments of the invention a pilot pattern is provided in which the pilot are sent using OFDM and data is sent using OFDM and/or transformed OFDM.
    Type: Application
    Filed: February 3, 2020
    Publication date: June 4, 2020
    Inventors: Jianglei Ma, Wen Tong, Ming Jia, Hua Xu, Peiying Zhu, Hang Zhang
  • Publication number: 20200177246
    Abstract: The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval will include numerous traffic symbols and two or more short pilot symbols, which are spaced apart from one another by at least one traffic symbol and will have a Fourier transform length that is less than the Fourier transform length of any given traffic symbol. Multiple transmitters will generate pilot information and modulate the pilot information onto sub-carriers of the short pilot symbols in an orthogonal manner. Each transmitter may use different sub-carriers within the time and frequency domain, which is encompassed by the short pilot symbols within the transmit time interval. Alternatively, each transmitter may uniquely encode the pilot information using a unique code division multiplexed code and modulate the encoded pilot information onto common sub-carriers of the short pilot symbols.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 4, 2020
    Inventors: Jianglei Ma, Ming Jia, Hua Xu, Wen Tong, Peiying Zhu, Moussa Abdi
  • Publication number: 20200162138
    Abstract: Aspects of the present invention provide additional MAC functionality to support the PHY features of a wireless communication system framework. The additional MAC functionality aids in enabling feedback from wireless terminals to base stations. In some aspects of the invention the feedback is provided on an allocated feedback channel. In other aspects of the invention the feedback is provided by MAC protocol data units (PDU) in a header, mini-header, or subheader. The feedback may be transmitted from the wireless terminal to the base station autonomously by the wireless terminal or in response to an indication from the base station that feedback is requested. Aspects of the invention also provide for allocating feedback resources to form a dedicated feedback channel. One or more of these enhancements is included in a given implementation. Base stations and wireless terminals are also described upon which methods described herein can be implemented.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Hang ZHANG, Mo-Han Fong, Peiying Zhu, Jianglei Ma, Wen Tong
  • Publication number: 20200143919
    Abstract: A method, device, and computer program storage product for generating a query to extract clinical features into a set of electronic medical record (EMR) tables based on clinical knowledge. A knowledge tree is constructed according to a set of clinical knowledge data. An EMR graph corresponding to a set of EMR tables is obtained. The EMR graph comprises at set of table nodes and a set of attribute nodes. The set of table nodes and the set of attribute nodes represent a structure of each EMR table in the set of EMR tables and a reference relationship among attributes of set of EMR tables. A plurality of sub-queries is generated based on the knowledge tree and the EMR graph. At least one query is generated by combining the plurality of sub-queries according to the knowledge tree.
    Type: Application
    Filed: December 10, 2019
    Publication date: May 7, 2020
    Applicant: International Business Machines Corporation
    Inventors: Bi Bo HAO, Gang HU, Jing LI, Wen SUN, Guo Tong XIE, Yi Qin YU
  • Patent number: 10644829
    Abstract: Embodiment techniques map parity bits to sub-channels based on their row weights. The row weight for a sub-channel may be viewed as the number of “ones” in the corresponding row of the Kronecker matrix or as a power of 2 with the exponent (i.e. the hamming weight) being the number of “ones” in the binary representation of the sub-channel index (further described below). In one embodiment, candidate sub-channels that have certain row weight values are reserved for parity bit(s). Thereafter, K information bits may be mapped to the K most reliable remaining sub-channels, and a number of frozen bits (e.g. N?K) may be mapped to the least reliable remaining sub-channels. Parity bits may then mapped to the candidate sub-channels, and parity bit values are determined based on a function of the information bits.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: May 5, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Huazi Zhang, Jiajie Tong, Rong Li, Jun Wang, Wen Tong, Yiqun Ge, Xiaocheng Liu, Gongzheng Zhang, Jian Wang, Nan Cheng, Qifan Zhang
  • Patent number: 10645643
    Abstract: A method of transmitting includes categorizing a transmission between the first device and a second device as one of a plurality of transmission types, and selecting an air interface from a plurality of air interface candidates in accordance with the transmission as categorized. The method also includes sending the transmission to the second device using the selected air interface.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: May 5, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jianglei Ma, Peiying Zhu, Ming Jia, Wen Tong
  • Publication number: 20200136655
    Abstract: The present invention provides channel interleaving method of a polar (Polar) code. The method includes: determining an M_r-row and M_c-column matrix used for interleaving, and permutating, based on permutation patterns of the column sequence numbers and/or permutation patterns of the row sequence numbers, the matrix into which the to-be-interleaved bits are written. The permutation patterns of the column sequence numbers are represented by: [Pc(0), Pc(1), . . . , Pc(ic), . . . , Pc(M_c?1)]. Pc(ic) is obtained by performing pruned bit reverse (PBR, pruned bit reverse)-based mapping on the column sequence number ic. The permutation patterns of the row sequence numbers are represented by: [Pr(0), Pr(1), . . . , Pr(ir), . . . , Pr(M_r?1)]. Pr(ir) is obtained by performing pruned bit reverse (PBR, pruned bit reverse)-based mapping on the row sequence number ir; and reading interleaved bits from the permutated matrix.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Inventors: Hui SHEN, Bin LI, Jiaqi GU, Wen TONG
  • Patent number: RE48133
    Abstract: An apparatus for adapting hyper cells in response to changing conditions of a cellular network is disclosed. During operation, the apparatus collects data regarding network conditions of the cellular network. In accordance with the collected network condition data, the apparatus changes an association of a transmit point from a second cell ID of a second hyper cell to a first cell ID of a first hyper cell. Virtual data channels, broadcast common control channel and virtual dedicated control channel, transmit point optimization, UE-centric channel sounding and measurement, and single frequency network synchronization are also disclosed.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: July 28, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jianglei Ma, Peiying Zhu, Wen Tong