Patents by Inventor Wen Tsai

Wen Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136280
    Abstract: A method includes forming a dielectric layer over a contact pad of a device, forming a first polymer layer over the dielectric layer, forming a first conductive line and a first portion of a second conductive line over the first polymer layer, patterning a photoresist to form an opening over the first portion of the second conductive feature, wherein after patterning the photoresist the first conductive line remains covered by photoresist, forming a second portion of the second conductive line in the opening, wherein the second portion of the second conductive line physically contacts the first portion of the second conductive line, and forming a second polymer layer extending completely over the first conductive line and the second portion of the second conductive line.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Inventors: Chao-Wen Shih, Chen-Hua Yu, Han-Ping Pu, Hsin-Yu Pan, Hao-Yi Tsai, Sen-Kuei Hsu
  • Publication number: 20240133467
    Abstract: A waterproof click pad device includes a click pad, a frame and a waterproof unit. The frame surrounds the click pad and surrounds an axis passing through the click pad. The waterproof unit is transverse to the axis and is in sheet form. The waterproof unit includes a frame adhesive member surrounding the axis and adhered to the frame, a first non-adhesive member surrounding the axis, connected to an inner periphery of the frame adhesive member and spaced apart from and located above the frame, a second non-adhesive member surrounding the axis, connected to an inner periphery of the first non-adhesive member and spaced apart from and located above the click pad and the frame, and an plate adhesive member connected to an inner periphery of the second non-adhesive member and adhered to the click pad.
    Type: Application
    Filed: January 4, 2023
    Publication date: April 25, 2024
    Applicant: SUNREX TECHNOLOGY CORP.
    Inventors: Yu-Xiang GENG, Chun-Chieh CHEN, Ling-Cheng TSENG, Yi-Wen TSAI, Ching-Yao HUANG
  • Publication number: 20240133421
    Abstract: An electronic device includes a monitor stand, a hinge mechanism, and an operation element. The hinge mechanism includes a back plate, a speed reduction assembly, and a friction assembly. The back plate is fixed to the monitor stand. The speed reduction assembly includes an input plate and a speed reduction member. The speed reduction member is arranged on the input plate. The friction assembly is arranged between the back plate and the input plate. The operation element is connected to the speed reduction member. A rotation center of the operation element coincides with an axis of the back plate and the speed reduction member are coaxially arranged.
    Type: Application
    Filed: January 17, 2023
    Publication date: April 25, 2024
    Inventors: Chih-Wei KUO, Yu-Chun HUNG, Che-Yen CHOU, Chen-Wei TSAI, Hsiang-Wen HUANG
  • Patent number: 11968906
    Abstract: A method for fabricating a semiconductor device includes the steps of: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a contact hole in the first IMD layer; forming a bottom electrode layer in the contact hole; forming a magnetic tunneling junction (MTJ) stack on the bottom electrode layer; and removing the MTJ stack and the bottom electrode layer to form a MTJ on a bottom electrode. Preferably, the bottom electrode protrudes above a top surface of the first IMD layer.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: April 23, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jin-Yan Chiou, Wei-Chuan Tsai, Hsin-Fu Huang, Yen-Tsai Yi, Hsiang-Wen Ke
  • Publication number: 20240120272
    Abstract: Embodiments of the present disclosure relates to a method for forming a semiconductor device structure. The method includes including forming one or more conductive features in a first interlayer dielectric (ILD), forming an etch stop layer on the first ILD, forming a second ILD over the etch stop layer, forming one or more openings through the second ILD and the etch stop layer to expose a top surface of the one or more first conductive features, wherein the one or more openings are formed by a first etch process in a first process chamber, exposing the one or more openings to a second etch process in a second process chamber so that the shape of the or more openings is elongated, and filling the one or more openings with a conductive material.
    Type: Application
    Filed: January 15, 2023
    Publication date: April 11, 2024
    Inventors: Wei-Hao LIAO, Hsi-Wen TIEN, Chih Wei LU, Yung-Hsu WU, Cherng-Shiaw TSAI, Chia-Wei SU
  • Publication number: 20240119613
    Abstract: A structured-light three-dimensional (3D) scanning system includes a projector that emits a projected light with a predetermined pattern onto an object; an image capture device that generates a captured image according to a reflected light reflected from the object, the predetermined pattern of the projected light being distorted due to 3D shape of the object, thereby resulting in a distorted pattern; a depth decoder that converts the distorted pattern into a depth map representing the 3D shape of the object; and a depth fusion device that generates a fused depth map according to at least two different depth maps associated with the object.
    Type: Application
    Filed: October 7, 2022
    Publication date: April 11, 2024
    Inventors: Hsueh-Tsung Lu, Ching-Wen Wang, Cheng-Che Tsai, Wu-Feng Chen
  • Patent number: 11955379
    Abstract: A metal adhesion layer may be formed on a bottom and a sidewall of a trench prior to formation of a metal plug in the trench. A plasma may be used to modify the phase composition of the metal adhesion layer to increase adhesion between the metal adhesion layer and the metal plug. In particular, the plasma may cause a shift or transformation of the phase composition of the metal adhesion layer to cause the metal adhesion layer to be composed of a (111) dominant phase. The (111) dominant phase of the metal adhesion layer increases adhesion between the metal adhesion layer.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pei-Wen Wu, Chun-I Tsai, Chi-Cheng Hung, Jyh-Cherng Sheu, Yu-Sheng Wang, Ming-Hsing Tsai
  • Patent number: 11955664
    Abstract: A battery module includes an insulating base, a pair of electrodes and multiple battery packs. Each electrode is installed to the insulating base and has a bridge portion and a wire connecting part exposed from the insulating base, and a pair of lugs is extended smoothly from each battery pack, and an end of at least a part of the lugs is attached to each bridge portion correspondingly. Therefore, the lug is not being twisted or deformed easily, and the battery module may have good conductive efficiency, long service life, and convenience of changing the battery pack.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: April 9, 2024
    Assignee: AMITA TECHNOLOGIES INC.
    Inventors: Chueh-Yu Ko, Hou-Chi Chen, Chia-Wen Yen, Ming-Hsiao Tsai
  • Patent number: 11942373
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first fin, a second fin and a third fin therebetween. A first insulating structure includes a first insulating layer formed between the first and third fins, a capping structure covering the first insulating layer, a first insulating liner covering sidewall surfaces of the first insulating layer and the capping structure and a bottom surface of the first insulating layer, and a second insulating liner formed between the first insulating liner and the first fin and between the first insulating liner and the third fin. The second insulating structure includes a second insulating layer formed between the second fin and the third fin and a third insulating liner formed between the second insulating layer and the second fin and between the second insulating layer and the third fin.
    Type: Grant
    Filed: May 10, 2023
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chu-An Lee, Chen-Hao Wu, Peng-Chung Jangjian, Chun-Wen Hsiao, Teng-Chun Tsai, Huang-Lin Chao
  • Patent number: 11942993
    Abstract: An optical transmission device includes: a control module generate a control signal output which includes a slope adjust signal and a bias voltage offset adjust signal according to an input signal indicating a dispersion amount an electrical level adjust signal; a multi-level pulse amplitude modulator; and an asymmetrical optical modulator which is controlled by the slope adjust signal to be operated at one of a positive slope and a negative slope of a transfer function of the asymmetrical optical modulator itself, and is controlled by the bias voltage offset adjust signal of the control signal output to offset a bias voltage point of the asymmetrical optical modulator itself from a quadrature point of the transfer function, and modulates the multi-level pulse amplitude modulation signal to an optical signal to generate an optical modulate signal having a chirp.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: March 26, 2024
    Assignee: Molex, LLC
    Inventors: Kuen-Ting Tsai, Wei-Hung Chen, Zuon-Min Chuang, Yao-Wen Liang
  • Patent number: 11937903
    Abstract: A blood pressure device includes a first blood pressure measuring device, a second blood pressure measuring device, and a controller. The first blood pressure measuring device is to be worn on a first position of a wrist so as to obtain a first blood pressure information of the first position. The second blood pressure measuring device is to be worn on a second position of the wrist so as to obtain a second blood pressure information of the second position. The controller is electrically coupled to the first blood pressure measuring device and the second blood pressure measuring device so as to adjust tightness between the expanders and the user's skin, respectively. The controller receives, processes, and calculates a pulse transit time between the first blood pressure information and the second blood pressure information, and the controller obtains at least one blood pressure value based on the pulse transit time.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: March 26, 2024
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Yung-Lung Han, Chi-Feng Huang, Chang-Yen Tsai, Wei-Ming Lee, Chun-Yi Kuo, Chin-Wen Hsieh
  • Publication number: 20240096701
    Abstract: A device includes: a stack of semiconductor nanostructures; a gate structure wrapping around the semiconductor nanostructures, the gate structure extending in a first direction; a source/drain region abutting the gate structure and the stack in a second direction transverse the first direction; a contact structure on the source/drain region; a backside conductive trace under the stack, the backside conductive trace extending in the second direction; a first through via that extends vertically from the contact structure to a top surface of the backside dielectric layer; and a gate isolation structure that abuts the first through via in the second direction.
    Type: Application
    Filed: May 17, 2023
    Publication date: March 21, 2024
    Inventors: Chun-Yuan CHEN, Huan-Chieh SU, Ching-Wei TSAI, Shang-Wen CHANG, Yi-Hsun CHIU, Chih-Hao WANG
  • Publication number: 20240096756
    Abstract: A method of making a semiconductor device includes manufacturing a first transistor over a first side of a substrate. The method further includes depositing a spacer material against a sidewall of the first transistor. The method further includes recessing the spacer material to expose a first portion of the sidewall of the first transistor. The method further includes manufacturing a first electrical connection to the transistor, a first portion of the electrical connection contacts a surface of the first transistor farthest from the substrate, and a second portion of the electrical connect contacts the first portion of the sidewall of the first transistor. The method further includes manufacturing a self-aligned interconnect structure (SIS) extending along the spacer material, wherein the spacer material separates a portion of the SIS from the first transistor, and the first electrical connection directly contacts the SIS.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Inventors: Chih-Yu LAI, Chih-Liang CHEN, Chi-Yu LU, Shang-Syuan CIOU, Hui-Zhong ZHUANG, Ching-Wei TSAI, Shang-Wen CHANG
  • Publication number: 20240094783
    Abstract: An example computing device includes a first housing portion, a second housing portion moveably connected to the first housing portion, a link to selectively secure the second housing portion to the first housing portion to inhibit movement of the second housing portion relative to the first housing portion, and a shape-memory alloy element to release the link to allow the second housing portion to move relative to the first housing portion.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 21, 2024
    Inventors: Yu-Wen LIN, Chia-Ming TSAI, Shih-Jen CHOU, John Joseph GRODEN
  • Publication number: 20240096805
    Abstract: In an embodiment, a method of forming a structure includes forming a first transistor and a second transistor over a first substrate; forming a front-side interconnect structure over the first transistor and the second transistor; etching at least a backside of the first substrate to expose the first transistor and the second transistor; forming a first backside via electrically connected to the first transistor; forming a second backside via electrically connected to the second transistor; depositing a dielectric layer over the first backside via and the second backside via; forming a first conductive line in the dielectric layer, the first conductive line being a power rail electrically connected to the first transistor through the first backside via; and forming a second conductive line in the dielectric layer, the second conductive line being a signal line electrically connected to the second transistor through the second backside via.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 21, 2024
    Inventors: Shang-Wen Chang, Yi-Hsun Chiu, Cheng-Chi Chuang, Ching-Wei Tsai, Wei-Cheng Lin, Shih-Wei Peng, Jiann-Tyng Tzeng
  • Publication number: 20240097007
    Abstract: A semiconductor device is described. An isolation region is disposed on the substrate. A plurality of channels extend through the isolation region from the substrate. The channels including an active channel and an inactive channel. A dummy fin is disposed on the isolation region and between the active channel and the inactive channel. An active gate is disposed over the active channel and the inactive channel, and contacts the isolation region. A dielectric material extends through the active gate and contacts a top of the dummy fin. The inactive channel is a closest inactive channel to the dielectric material. A long axis of the active channel extends in a first direction. A long axis of the active gate extends in a second direction. The active channel extends in a third direction from the substrate. The dielectric material is closer to the inactive channel than to the active channel.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Yao Lin, Hsiao Wen Lee, Ya-Yi Tsai, Shu-Uei Jang, Chih-Han Lin, Shu-Yuan Ku
  • Patent number: 11934097
    Abstract: The present invention provides an imprinting method, which includes the steps of: adding a soluble material to a master mold; solidifying the soluble material to form a soluble mold having a mold pattern; adhering a taking device to the soluble mold to separate the soluble mold from the master mold; placing the soluble mold on a polymer layer of a workpiece for imprint; applying a high temperature and a pressure to the soluble mold to allow the polymer layer having an imprint pattern corresponding to the mold pattern and being solidified, and to remove the taking device from the soluble mold; and providing a solvent to dissolve the soluble mold to obtain an imprint workpiece having the imprint pattern.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: March 19, 2024
    Assignee: EVER RADIANT INCORPORATION
    Inventor: Sung-Wen Tsai
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 11935957
    Abstract: Semiconductor device structures having gate structures with tunable threshold voltages are provided. Various geometries of device structure can be varied to tune the threshold voltages. In some examples, distances from tops of fins to tops of gate structures can be varied to tune threshold voltages. In some examples, distances from outermost sidewalls of gate structures to respective nearest sidewalls of nearest fins to the respective outermost sidewalls (which respective gate structure overlies the nearest fin) can be varied to tune threshold voltages.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chiang Wu, Wei-Chin Lee, Shih-Hang Chiu, Chia-Ching Lee, Hsueh Wen Tsau, Cheng-Yen Tsai, Cheng-Lung Hung, Da-Yuan Lee, Ching-Hwanq Su
  • Publication number: 20240084017
    Abstract: Monoclonal antibodies against human Mac-1 are provided. These antibodies can bind to different states of Mac-1 so as to alter the biofunctions of Mac-1. These antibodies can modulate Th1/Th2 cytokine secretions by TLR-activated immune cells and can be used for the treatments of diseases related to acute and chronic inflammatory disorders, such as infectious diseases, and cancers.
    Type: Application
    Filed: December 30, 2021
    Publication date: March 14, 2024
    Applicant: Ascendo Biotechnology, Inc.
    Inventors: Yen-Ta Lu, Chia-Ming Chang, Ping-Yen Huang, I-Fang Tsai, Frank Wen-Chi Lee