Patents by Inventor Wenyih F. Lai
Wenyih F. Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12239964Abstract: Methods and corresponding catalysts are provided for conversion of an aromatic feed containing C8+ aromatics (particularly C9+ aromatics) to form a converted product mixture comprising, e.g., benzene and/or xylenes. The aromatic feed can be converted in the presence of a catalyst that includes a silica binder, a mixture of a first zeolite having an MEL framework (such as ZSM-11 and/or an MFI framework (such as ZSM-5), and a second zeolite having an MOR framework, such as mordenite, particularly a mordenite synthesized using TEA or MTEA as a structure directing agent, and a metal. The catalyst can further include one or more metals supported on the catalyst.Type: GrantFiled: March 26, 2020Date of Patent: March 4, 2025Assignee: ExxonMobil Engineering & Technology CompanyInventors: Joseph E. Gatt, Maryam Peer, Natalie A. Fassbender, William J. Knaeble, Jocelyn A. Gilcrest, Wenyih F. Lai, Paul Podsiadlo, Thomas J. Ferro, Doron Levin, Benjamin C. Gamoke
-
Patent number: 12202794Abstract: A method for isomerizing alpha olefins to produce an isomerization mixture comprising branched olefins can comprise contacting an olefinic feed including one or more C10-C20 alpha olefins with a catalyst under skeletal isomerization conditions, wherein the catalyst comprises a molecular sieve having an MRE topology; and obtaining an isomerization mixture comprising one or more C10-C20 branched olefins.Type: GrantFiled: March 22, 2021Date of Patent: January 21, 2025Assignee: ExxonMobil Chemical Patents Inc.Inventors: Sina Sartipi, Wenyih Frank Lai, Roxana Perez Velez, Renyuan Yu, Paul F. Keusenkothen, Zsigmond Varga
-
Patent number: 12115521Abstract: Methods and corresponding catalysts are provided for conversion of an aromatics feed containing C8+ aromatics, particularly C9+ aromatics, to form a converted product mixture comprising, e.g., benzene and/or xylenes. The aromatic feed can be converted in the presence of a catalyst that includes a mixture of a first zeolite having an MEL framework, such as ZSM-11, and a second zeolite having a MOR framework, such as mordenite, particularly a mordenite synthesized using TEA or MTEA as a structure directing agent. The weight ratio of the first zeolite to the second zeolite in the catalyst can be from 0.3 to 1.2, or from 0.3 to 1.1, or from 0.3 to 1.0. The catalyst can further include one or more metals supported on the catalyst, such as a combination of metals.Type: GrantFiled: March 26, 2020Date of Patent: October 15, 2024Assignee: ExxonMobil Engineering & Technology CompanyInventors: Maryam Peer, Joseph E. Gatt, Preeti Kamakoti, William J. Knaeble, Wenyih F. Lai, Paul Podsiadlo, Dominick A. Zurlo, Thomas J. Ferro, Doron Levin, Benjamin C. Gamoke
-
Patent number: 12060320Abstract: Novel MEL framework type zeolites can be made to have small crystallite sizes and desirable silica/SiO2 molar ratios. Catalyst compositions comprising such MEL framework type zeolites can be particularly advantageous in isomerization C8 aromatic mixtures. An isomerization process for converting C8 aromatic hydrocarbons can advantageously utilize a catalyst composition comprising a MEL framework type zeolite.Type: GrantFiled: March 25, 2020Date of Patent: August 13, 2024Assignee: ExxonMobil Engineering & Technology CompanyInventors: Paul Podsiadlo, Eric D. Metzger, Wenyih F. Lai, Ali A. Kheir, Dominick A. Zurlo, Jocelyn A. Gilcrest, Kathleen M. Keville
-
Patent number: 11986807Abstract: Catalyst composition which comprises a first zeolite having a BEA* framework type and a second zeolite having a MOR framework type and a mesopore surface area of greater than 30 m2/g is disclosed. These catalyst compositions are used to remove catalyst poisons from untreated feed streams having one or more impurities which cause deactivation of the downstream catalysts employed in hydrocarbon conversion processes, such as those that produce mono-alkylated aromatic compounds.Type: GrantFiled: April 12, 2023Date of Patent: May 21, 2024Assignee: ExxonMobil Engineering & Technology CompanyInventors: Matthew S. Ide, Doron Levin, Wenyih F. Lai, Ivy D. Johnson, Scott J. Weigel, Brett T. Loveless
-
Publication number: 20230383022Abstract: Processes for making saturated isomerized polyalphaolefm by concurrently isomerizing and hydrogenating unsaturated polyalphaolefm in the presence of a high activity catalyst. Such processes can include contacting at least one unsaturated polyalphaolefm with a catalyst capable of both isomerizing and hydrogenating the polyalphaolefm, wherein the catalyst includes a zeolite or mesoporous material, the zeolite having a silica to alumina mole ratio of from about 5 to about 100 and an alpha value of from about 10 to about 1,000, and the mesoporous material having a collidine uptake of from about 100 ??moles/g to about 500 ?moles/g, wherein a Group VIB to VIIIB metal is incorporated in the catalyst at a concentration of from about 0.01 wt % to about 60.00 wt %, and wherein the zeolite is selected from the group consisting of ZSM-48, ZSM-23, ZSM-12, ZSM-35, ZSM-11, ZSM-57, Beta zeolite, Mordenite zeolite, USY zeolite, zeolite having a MWW framework, and combinations thereof.Type: ApplicationFiled: November 8, 2021Publication date: November 30, 2023Inventors: Mark H. Li, Renyuan Yu, Patrick C. Chen, Anatoly I. Kramer, Wenyih F. Lai
-
Patent number: 11827579Abstract: This disclosure provides improved processes for converting benzene/toluene via methylation with methanol/dimethyl ether for producing, e.g., p-xylene. In an embodiment, a process utilizes a methylation catalyst system comprising a molecular sieve catalyst and an auxiliary catalyst. The auxiliary catalyst comprises a metal element selected from Group 2, Group 3, the lanthanide series, the actinide series, and mixtures and combinations thereof. The auxiliary catalyst may comprise the oxide of the metal element. Deactivation of the molecular sieve catalyst can be reduced with the inclusion of the auxiliary catalyst in the methylation catalyst system.Type: GrantFiled: March 18, 2020Date of Patent: November 28, 2023Assignee: ExxonMobil Technology and Engineering CompanyInventors: Seth M. Washburn, Hsu Chiang, Umar Aslam, Wenyih F. Lai, Doron Levin, Tan-Jen Chen
-
Publication number: 20230249167Abstract: Catalyst composition which comprises a first zeolite having a BEA* framework type and a second zeolite having a MOR framework type and a mesopore surface area of greater than 30 m2/g is disclosed. These catalyst compositions are used to remove catalyst poisons from untreated feed streams having one or more impurities which cause deactivation of the downstream catalysts employed in hydrocarbon conversion processes, such as those that produce mono-alkylated aromatic compounds.Type: ApplicationFiled: April 12, 2023Publication date: August 10, 2023Inventors: Matthew S. Ide, Doron Levin, Wenyih F. Lai, Ivy D. Johnson, Scott J. Weigel, Brett T. Loveless
-
Patent number: 11701645Abstract: A catalyst comprising a microporous crystalline metallosilicate having a Constraint Index of 12, or 10, or 8, or 6 or less, a binder, a Group 1 alkali metal or a compound thereof and/or a Group 2 alkaline earth metal or a compound thereof, a Group 10 metal or a compound thereof, and, optionally, a Group 11 metal or a compound thereof; wherein the catalyst is calcined in a first calcining step before the addition of the Group 10 metal or compound thereof and optionally the Group 11 metal or compound thereof; and wherein the first calcining step includes heating the catalyst to first temperatures of greater than 500° C.; and wherein the catalyst is calcined in a second calcining step after the addition of the Group 10 metal or compound thereof and optionally the Group 11 metal or compound thereof wherein the second calcining step includes heating the catalyst to temperatures of greater than 400° C.Type: GrantFiled: October 10, 2019Date of Patent: July 18, 2023Assignee: ExxonMobil Chemical Patents Inc.Inventors: Larry L. Iaccino, Jeremy W. Bedard, Xiaoying Bao, Andrew P. Palermo, Nitish Mittal, Maria Milina, Doron Levin, William R. Gunther, Wenyih F. Lai, Tilman W. Beutel
-
Publication number: 20230212094Abstract: Processes for converting C8 aromatic hydrocarbons. In some embodiments, the process can include feeding a gaseous hydrocarbon feed that can include meta-xylene, ortho-xylene, or both into a conversion zone. The process can also include contacting the gaseous hydrocarbon feed with a catalyst that can include a ZSM-11 zeolite in the conversion zone under conversion conditions to effect isomerization of at least a portion of any meta-xylene, or at least a portion of any ortho-xylene, or both to produce a conversion product rich in para-xylene. In some embodiments, the ZSM-11 zeolite can have an alpha value of 1 to 3,000 and a molar ratio of silica to alumina of from 15 to 200.Type: ApplicationFiled: March 12, 2021Publication date: July 6, 2023Inventors: Eric D. Metzger, Mayank Shekhar, Wenyih F. Lai, Paul Podsiadlo, Dominick A. Zurlo, Kathleen M. Keville
-
Patent number: 11654423Abstract: Catalyst composition which comprises a first zeolite having a BEA* framework type and a second zeolite having a MOR framework type and a mesopore surface area of greater than 30 m2/g is disclosed. These catalyst compositions are used to remove catalyst poisons from untreated feed streams having one or more impurities which cause deactivation of the downstream catalysts employed in hydrocarbon conversion processes, such as those that produce mono-alkylated aromatic compounds.Type: GrantFiled: February 7, 2018Date of Patent: May 23, 2023Assignee: ExxonMobil Chemical Patents Inc.Inventors: Matthew S. Ide, Doron Levin, Wenyih F. Lai, Ivy D. Johnson, Scott J. Weigel, Brett T. Loveless
-
Patent number: 11332420Abstract: Processes are described for isomerizing one or more C14-C24 alpha olefins to produce an isomerization mixture comprising one or more C14-C24 internal olefins comprising contacting an olefinic feed comprising the one or more C14-C24 alpha olefins with a catalyst under isomerization conditions, wherein the catalyst comprises a microporous crystalline aluminosilicate having an MWW framework. The resulting isomerization mixture typically exhibits a low pour point with maintained biodegradability properties as compared to the olefinic feed, and is particularly useful in drilling fluid and paper sizing compositions.Type: GrantFiled: December 4, 2018Date of Patent: May 17, 2022Assignee: ExxonMobil Chemical Patents Inc.Inventors: Ronald Raymond Hill, Jr., Renyuan Yu, Elizabeth G. Mahoney, Anatoly I. Kramer, Wenyih F. Lai, Paul F. Keusenkothen, Nan Hu, Andrew P. Broenen, James R. Lattner
-
Publication number: 20220144725Abstract: Novel MEL framework type zeolites can be made to have small crystallite sizes and desirable silica/SiO2 molar ratios. Catalyst compositions comprising such MEL framework type zeolites can be particularly advantageous in isomerization C8 aromatic mixtures. An isomerization process for converting C8 aromatic hydrocarbons can advantageously utilize a catalyst composition comprising a MEL framework type zeolite.Type: ApplicationFiled: March 25, 2020Publication date: May 12, 2022Inventors: Paul Podsiadlo, Eric D. Metzger, Wenyih F. Lai, Ali A. Kheir, Dominick A. Zurlo, Jocelyn A. Gilcrest, Kathleen M. Keville
-
Publication number: 20220134318Abstract: Novel MEL framework type zeolites can be made to have small crystallite sizes and desirable silica/SiCb molar ratios. Catalyst compositions comprising such MEL framework type zeolites can be particularly advantageous in isomerization C8 aromatic mixtures. An isomerization process for converting C8 aromatic hydrocarbons can advantageously utilize a catalyst composition comprising a MEL framework type zeolite.Type: ApplicationFiled: March 25, 2020Publication date: May 5, 2022Inventors: Wenyih F. Lai, Paul Podsiadlo, Eric D. Metzger, Ivy D. Johnson, Ali A. Kheir, Dominick A. Zurlo, Kathleen M. Keville
-
Publication number: 20220126278Abstract: Methods and corresponding catalysts are provided for conversion of an aromatics feed containing C8+ aromatics, particularly C9+ aromatics, to form a converted product mixture comprising, e.g., benzene and/or xylenes. The aromatic feed can be converted in the presence of a catalyst that includes a mixture of a first zeolite having an MEL framework, such as ZSM-11, and a second zeolite having a MOR framework, such as mordenite, particularly a mordenite synthesized using TEA or MTEA as a structure directing agent. The weight ratio of the first zeolite to the second zeolite in the catalyst can be from 0.3 to 1.2, or from 0.3 to 1.1, or from 0.3 to 1.0. The catalyst can further include one or more metals supported on the catalyst, such as a combination of metals.Type: ApplicationFiled: March 26, 2020Publication date: April 28, 2022Inventors: Maryam Peer, Joseph E. Gatt, Preeti Kamakoti, William J. Knaeble, Wenyih F. Lai, Paul Podsiadlo, Dominick A. Zurlo, Thomas J. Ferro, Doron Levin, Benjamin C. Gamoke
-
Publication number: 20220126279Abstract: Methods and corresponding catalysts are provided for conversion of an aromatic feed containing C8+ aromatics (particularly C9+ aromatics) to form a converted product mixture comprising, e.g., benzene and/or xylenes. The aromatic feed can be converted in the presence of a catalyst that includes a silica binder, a mixture of a first zeolite having an MEL framework (such as ZSM-11 and/or an MFI framework (such as ZSM-5), and a second zeolite having an MOR framework, such as mordenite, particularly a mordenite synthesized using TEA or MTEA as a structure directing agent, and a metal. The catalyst can further include one or more metals supported on the catalyst.Type: ApplicationFiled: March 26, 2020Publication date: April 28, 2022Inventors: Joseph E. Gatt, Maryam Peer, Natalie A. Fassbender, William J. Knaeble, Jocelyn A. Gilcrest, Wenyih F. Lai, Paul Podsiadlo, Thomas J. Ferro, Doron Levin, Benjamin C. Gamoke
-
Patent number: 11312669Abstract: A process for olefin oligomerization can include: contacting a feedstock comprising at least one C3 to C20 olefin/paraffin under oligomerization conditions in the presence of a Si/Al ZSM-23 catalyst having no amine treatment and a Si/Al2 molar ratio of 20 to 60 and/or a Si/Al/Ti ZSM-23 catalyst having no amine treatment, a Si/Al2 molar ratio of 20 to 60, and a Ti/Al molar ratio of 0.1 to 3; and recovering an oligomeric product comprising dimers having a branching index of less than 2.1, trimers having a branching index of less than 2.1, and tetramers having a branching index of less than 2.1.Type: GrantFiled: September 26, 2019Date of Patent: April 26, 2022Assignee: ExxonMobil Chemical Patents Inc.Inventors: Shiwen Li, Alan A. Galuska, Jennifer A. Carvajal Diaz, Mika L. Shiramizu, Wenyih F. Lai, Lara A. Truter
-
Publication number: 20220119324Abstract: This disclosure provides improved processes for converting benzene/toluene via methylation with methanol/dimethyl ether for producing, e.g., p-xylene. In an embodiment, a process utilizes a methylation catalyst system comprising a molecular sieve catalyst and an auxiliary catalyst. The auxiliary catalyst comprises a metal element selected from Group 2, Group 3, the lanthanide series, the actinide series, and mixtures and combinations thereof. The auxiliary catalyst may comprise the oxide of the metal element. Deactivation of the molecular sieve catalyst can be reduced with the inclusion of the auxiliary catalyst in the methylation catalyst system.Type: ApplicationFiled: March 18, 2020Publication date: April 21, 2022Inventors: Seth M. Washburn, Hsu Chiang, Umar Aslam, Wenyih F. Lai, Doron Levin, Tan-Jen Chen
-
Patent number: 11261141Abstract: Processes are described for isomerizing one or more C4-C24 alpha olefins to produce an isomerization mixture comprising one or more C4-C24 internal olefins comprising contacting an olefinic feed comprising the one or more C4-C24 alpha olefins with a catalyst under isomerization conditions, wherein the catalyst comprises a microporous crystalline aluminosilicate selected from the group consisting of ZSM-5, ZSM-23, ZSM-35, ZSM-11, ZSM-12, ZSM-48, ZSM-57, and mixtures or combinations thereof, and wherein the microporous crystalline aluminosilicate has a SiO2/Al2O3 molar ratio of less than or equal to about 100. The resulting isomerization mixture typically exhibits a lower pour point and maintained biodegradability properties as compared to the olefinic feed, and is particularly useful in drilling fluid and paper sizing compositions.Type: GrantFiled: December 4, 2018Date of Patent: March 1, 2022Assignee: ExxonMobil Chemical Patents Inc.Inventors: Anatoly I Kramer, Renyuan Yu, Brett Thomas Loveless, Wenyih F. Lai, Mechilium J. G. Janssen
-
Patent number: 11236027Abstract: Disclosed are processes for conversion of a feedstock comprising C8+ aromatic hydrocarbons to lighter aromatic products in which the feedstock and optionally hydrogen are contacted in the presence of the catalyst composition under conversion conditions effective to dealkylate and transalkylate said C8+ aromatic hydrocarbons to produce said lighter aromatic products comprising benzene, toluene and xylene. The catalyst composition comprises a zeolite, a first metal, and a second metal, and is treated with a source of sulfur and/or a source of steam.Type: GrantFiled: March 15, 2021Date of Patent: February 1, 2022Assignee: ExxonMobil Chemical Patents Inc.Inventors: Christine N. Elia, Wenyih F. Lai, Hari Nair, Joshua I. Cutler, Chuansheng Bai, Nicholas S. Rollman