Patents by Inventor Wenbing Yang

Wenbing Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210305059
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Application
    Filed: June 15, 2021
    Publication date: September 30, 2021
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-Tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Patent number: 11069535
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: July 20, 2021
    Assignee: Lam Research Corporation
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-Tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Publication number: 20210005425
    Abstract: Etching a refractory metal or other high surface binding energy material on a substrate can maintain or increase the smoothness of the metal/high EO surface, in some cases produce extreme smoothing. A substrate having an exposed refractory metal/high EO surface is provided. The refractory metal/high EO surface is exposed to a modification gas to modify the surface and form a modified refractory metal/high EO surface. The modified refractory metal/high EO surface is exposed to an energetic particle to preferentially remove the modified refractory metal/high EO surface relative to an underlying unmodified refractory metal/high EO surface such that the exposed refractory metal/high EO surface after removing the modified refractory metal/high EO surface is as smooth or smoother than the substrate surface before exposing the substrate surface to the modification gas.
    Type: Application
    Filed: March 15, 2019
    Publication date: January 7, 2021
    Inventors: Wenbing Yang, Tamal Mukherjee, Mohand Brouri, Samantha Tan, Yang Pan, Keren Jacobs Kanarik
  • Publication number: 20200402770
    Abstract: Methods and apparatus for performing high energy atomic layer etching are provided herein. Methods include providing a substrate having a material to be etched, exposing a surface of the material to a modification gas to modify the surface and form a modified surface, and exposing the modified surface to an energetic particle to preferentially remove the modified surface relative to an underlying unmodified surface where the energetic particle has an ion energy sufficient to overcome an average surface binding energy of the underlying unmodified surface. The energy of the energetic particle used is very high; in some cases, the power applied to a bias used when exposing the modified surface to the energetic particle is at least 150 eV.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventors: Wenbing Yang, Samantha S.H. Tan, Tamal Mukherjee, Keren Jacobs Kanarik, Yang Pan
  • Publication number: 20200286743
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 10, 2020
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-Tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Patent number: 10763083
    Abstract: Methods and apparatus for performing high energy atomic layer etching are provided herein. Methods include providing a substrate having a material to be etched, exposing a surface of the material to a modification gas to modify the surface and form a modified surface, and exposing the modified surface to an energetic particle to preferentially remove the modified surface relative to an underlying unmodified surface where the energetic particle has an ion energy sufficient to overcome an average surface binding energy of the underlying unmodified surface. The energy of the energetic particle used is very high; in some cases, the power applied to a bias used when exposing the modified surface to the energetic particle is at least 150 eV.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: September 1, 2020
    Assignee: Lam Research Corporation
    Inventors: Wenbing Yang, Samantha Tan, Tamal Mukherjee, Keren Jacobs Kanarik, Yang Pan
  • Patent number: 10749103
    Abstract: Apparatuses for etching metal by depositing a material reactive with a metal to be etched and a halogen to form a volatile species and exposing the substrate to a halogen-containing gas and activation gas to etch the substrate are provided. Deposited materials may include silicon, germanium, titanium, carbon, tin, and combinations thereof. Apparatuses are suitable for fabricating MRAM structures and may be used to integrate ALD and ALE processes without breaking vacuum.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: August 18, 2020
    Assignee: Lam Research Corporation
    Inventors: Samantha Tan, Taeseung Kim, Wenbing Yang, Jeffrey Marks, Thorsten Lill
  • Patent number: 10727073
    Abstract: Methods and apparatuses for etching semiconductor material on substrates using atomic layer etching by chemisorption, by deposition, or by both chemisorption and deposition mechanisms in combination with oxide passivation are described herein. Methods involving atomic layer etching using a chemisorption mechanism involve exposing the semiconductor material to chlorine to chemisorb chlorine onto the substrate surface and exposing the modified surface to argon to remove the modified surface. Methods involving atomic layer etching using a deposition mechanism involve exposing the semiconductor material to a sulfur-containing gas and hydrogen to deposit and thereby modify the substrate surface and removing the modified surface.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: July 28, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Samantha Tan, Wenbing Yang, Keren Jacobs Kanarik, Thorsten Lill, Yang Pan
  • Publication number: 20200161139
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 21, 2020
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Patent number: 10515816
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: December 24, 2019
    Assignee: Lam Research Corporation
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha SiamHwa Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Publication number: 20190312194
    Abstract: Methods of etching metal by depositing a material reactive with a metal to be etched and a halogen to form a volatile species and exposing the substrate to a halogen-containing gas and activation gas to etch the substrate are provided. Deposited materials may include silicon, germanium, titanium, carbon, tin, and combinations thereof. Methods are suitable for fabricating MRAM structures and may involve integrating ALD and ALE processes without breaking vacuum.
    Type: Application
    Filed: June 21, 2019
    Publication date: October 10, 2019
    Inventors: Samantha Tan, Taeseung Kim, Wenbing Yang, Jeffrey Marks, Thorsten Lill
  • Patent number: 10374144
    Abstract: Methods of etching metal by depositing a material reactive with a metal to be etched and a halogen to form a volatile species and exposing the substrate to a halogen-containing gas and activation gas to etch the substrate are provided. Deposited materials may include silicon, germanium, titanium, carbon, tin, and combinations thereof. Methods are suitable for fabricating MRAM structures and may involve integrating ALD and ALE processes without breaking vacuum.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 6, 2019
    Assignee: Lam Research Corporation
    Inventors: Samantha Tan, Taeseung Kim, Wenbing Yang, Jeffrey Marks, Thorsten Lill
  • Publication number: 20190139778
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Application
    Filed: December 14, 2018
    Publication date: May 9, 2019
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha SiamHwa Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Publication number: 20190108982
    Abstract: Methods and apparatus for performing high energy atomic layer etching are provided herein. Methods include providing a substrate having a material to be etched, exposing a surface of the material to a modification gas to modify the surface and form a modified surface, and exposing the modified surface to an energetic particle to preferentially remove the modified surface relative to an underlying unmodified surface where the energetic particle has an ion energy sufficient to overcome an average surface binding energy of the underlying unmodified surface. The energy of the energetic particle used is very high; in some cases, the power applied to a bias used when exposing the modified surface to the energetic particle is at least 150 eV.
    Type: Application
    Filed: October 1, 2018
    Publication date: April 11, 2019
    Inventors: Wenbing Yang, Samantha Tan, Tamal Mukherjee, Keren Jacobs Kanarik, Yang Pan
  • Patent number: 10186426
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 22, 2019
    Assignee: Lam Research Corporation
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Patent number: 10096487
    Abstract: Provided herein are methods of atomic layer etching (ALE) of metals including tungsten (W) and cobalt (Co). The methods disclosed herein provide precise etch control down to the atomic level, with etching a low as 1 ? to 10 ? per cycle in some embodiments. In some embodiments, directional control is provided without damage to the surface of interest. The methods may include cycles of a modification operation to form a reactive layer, followed by a removal operation to etch only this modified layer. The modification is performed without spontaneously etching the surface of the metal.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: October 9, 2018
    Assignee: Lam Research Corporation
    Inventors: Wenbing Yang, Samantha Tan, Keren Jacobs Kanarik, Jeffrey Marks, Taeseung Kim, Meihua Shen, Thorsten Lill
  • Publication number: 20180240682
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein. Methods involve introducing an activation gas at a chamber pressure and/or applying a bias using a bias power selected to preferentially etch the metal at or near the opening of the feature relative to the interior region of the feature. Apparatuses include integrated hardware for performing deposition of metal and atomic layer etching of metal in the same tool and/or without breaking vacuum.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 23, 2018
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Patent number: 10056264
    Abstract: Provided herein are ALE methods of removing III-V materials such as gallium nitride (GaN) and related apparatus. In some embodiments, the methods involve exposing the III-V material to a chlorine-containing plasma without biasing the substrate to form a modified III-V surface layer; and applying a bias voltage to the substrate while exposing the modified III-V surface layer to a plasma to thereby remove the modified III-V surface layer. The disclosed methods are suitable for a wide range of applications, including etching processes for trenches and holes, fabrication of HEMTs, fabrication of LEDs, and improved selectivity in etching processes.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: August 21, 2018
    Assignee: Lam Research Corporation
    Inventors: Wenbing Yang, Tomihito Ohba, Samantha Tan, Keren Jacobs Kanarik, Jeffrey Marks, Kazuo Nojiri
  • Patent number: 9972504
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: May 15, 2018
    Assignee: Lam Research Corporation
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Publication number: 20180033635
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Application
    Filed: September 28, 2017
    Publication date: February 1, 2018
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill