Patents by Inventor Wendy Naimark

Wendy Naimark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060206056
    Abstract: Injection devices are provided, which reduce potential outflow of therapeutic agents from an injection site. Devices are provided having at least a first lumen containing one or more therapeutic agents and a second lumen containing a second material for injection into tissue. Other devices are provided having an inner lumen with an injection needle to inject a therapeutic agent and an outer lumen that provides a vacuum seal between the injection needle and the needle track. Further provided are methods of delivering a therapeutic agent to tissue.
    Type: Application
    Filed: May 12, 2006
    Publication date: September 14, 2006
    Inventors: Toby Freyman, Wendy Naimark, Tim Mickley, Samuel Epstein
  • Publication number: 20060200083
    Abstract: A catheter having a drug delivery unit at the distal end thereof. The drug delivery unit includes an actuator capable of assuming an activated and an inactivated configuration. The drug delivery unit also includes a receptacle capable of accepting a therapeutic agent. The actuator and receptacle are in communication with each other such that the actuator transmits force to the receptacle and the receptacle accepts force from the actuator in an activated configuration of the actuator. Also provided is a method of delivering a therapeutic agent to a target site using the catheter of the present invention.
    Type: Application
    Filed: March 3, 2005
    Publication date: September 7, 2006
    Inventors: Toby Freyman, Maria Palasis, Wendy Naimark, Timothy Mickley
  • Patent number: 7101394
    Abstract: A medical device and system capable of providing on-demand delivery of biologically active material to a body lumen patient, and a method of making such medical device. A first coating layer comprising a biologically active material and optionally a polymeric material is disposed on the surface of the medical device. A second coating layer comprising magnetic particles and a polymeric material is disposed on the first coating layer. The second coating layer, which is substantially free of a biologically active material, protects the biologically active material prior to delivery. The system includes the medical device and a source of energy, such as an electromagnetic or mechanical vibrational energy. When the patient is exposed to the energy source, the magnetic particles move out of the second coating layer and create channels therein through which the biologically active material can be released.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: September 5, 2006
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Mark A Hamm, Louis J Barbato, Robert J Crowley, Wendy Naimark, Hatal Patel
  • Publication number: 20060195059
    Abstract: Embodiments of the present invention regard the delivery of therapeutic. One such apparatus may comprise multiple, independently-activated, injection devices for the delivery of therapeutic or other substances. This apparatus may include a first catheter; a second catheter in the first catheter and a multiple delivery member injection device. This multiple delivery member may include an expandable member and a plurality of injection elements. A third catheter may be positioned in the second catheter. This third catheter may have a distal end connected to a wall of the expandable member and a plurality of filling tubes connected to an distal end of the third catheter. In some of the embodiments each of the injection elements may hold a pressurized therapeutic prior to release of the therapeutic.
    Type: Application
    Filed: January 21, 2005
    Publication date: August 31, 2006
    Inventors: Toby Freyman, Maria Palasis, Wendy Naimark, William Shaw
  • Publication number: 20060167418
    Abstract: Embodiments of the present invention relate to multiple needle catheter-based injection systems to deliver a plug of a therapeutic or other agent. A medical device may include a catheter with a distal end, a proximal end and a catheter lumen extending there between and an outer needle disposed in the catheter lumen with a distal end and a proximal end and an outer needle lumen extending there between. The medical device may include an inner needle with a distal end and a proximal end, the inner needle being disposed in the outer needle lumen and the distal end of the inner needle to receive and hold a therapeutic plug, and a needle control mechanism coupled to the proximal ends of the outer needle and the inner needle, the needle control mechanism to independently and jointly control ejection and retraction of the outer and inner needles to deliver the therapeutic plug into a target tissue site.
    Type: Application
    Filed: January 27, 2005
    Publication date: July 27, 2006
    Inventors: Inas Khayal, Wendy Naimark, Maria Palasis
  • Patent number: 7070582
    Abstract: Injection devices are provided, which reduce potential outflow of therapeutic agents from an injection site. Devices are provided having at least a first lumen containing one or more therapeutic agents and a second lumen containing a second material for injection into tissue. Other devices are provided having an inner lumen with an injection needle to inject a therapeutic agent and an outer lumen that provides a vacuum seal between the injection needle and the needle track. Further provided are methods of delivering a therapeutic agent to tissue.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: July 4, 2006
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Toby Freyman, Wendy Naimark, Tim Mickley, Samuel J. Epstein
  • Patent number: 7060056
    Abstract: Many conventional pharmaceutical articles contain seemingly inert components that come into contact with a pharmaceutically active material during use, which contact substantially reduces the pharmaceutical effectiveness of the pharmaceutically active material. The invention described herein concerns various modifications to these incompatible components, which are effective to diminish the reduction in pharmaceutical effectiveness.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: June 13, 2006
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Maria Palasis, Wendy Naimark, Timothy Mickley, Louis Ellis
  • Publication number: 20060105018
    Abstract: The present invention regards the delivery of therapeutic at a target site. Systems that employ the present invention may employ a medical device sized to be inserted into a target site, a driving layer covering at least a portion of an accessible surface of the medical device, and a therapeutic interfaced with at least a portion of the driving layer. In this system, the driving layer may have a material characteristic that serves to release the therapeutic from the medical device when the medical device is at the target site. Other systems that employ the invention may also have properties that include having a driving layer with a higher solubility than the therapeutic at the target site, a medical device that is hydrophobic while the therapeutic is hydrophilic, and a coating covering at least a portion of the therapeutic.
    Type: Application
    Filed: November 17, 2004
    Publication date: May 18, 2006
    Inventors: Samuel Epstein, Irina Ostrovsky, Wendy Naimark, Anastasia Panos
  • Publication number: 20060029720
    Abstract: Methods and apparatus for coating at least a portion of the surface of medical devices using an injection coating device are disclosed. In one embodiment, the invention includes a coating method wherein an orifice of the injection coating device is placed adjacent a vertically positioned medical device, coating material is ejected from the orifice onto the medical device, and the coating material gravitationally flows downward coating the medical device. In another embodiment, an orifice of an injection coating device is positioned adjacent a horizontally positioned medical device to gravitationally flow and deposit coating material onto the medical device. These methods may be used to apply one or more coating materials, simultaneously or in sequence. In another embodiment, multiple injection coating devices may be utilized. In certain embodiments of the invention, the coating materials include therapeutic or biologically active agents.
    Type: Application
    Filed: August 3, 2004
    Publication date: February 9, 2006
    Inventors: Anastasia Panos, Wendy Naimark, Maria Palasis, Toby Freyman, Samuel Epstein
  • Patent number: 6984411
    Abstract: An improved method for high-volume production of coated stents with highly uniform stent coatings using a roll coating technique is provided. In a first embodiment, uncoated stents are placed onto rotating stent holders with automated stent handling equipment. The holders are mounted on an endless conveyer belt which advances the stents toward a stent coater. As the stents advance through the coater, the holders rotate, thereby rolling the stents about their longitudinal axes as coating material is sprayed toward them, ensuring the stents are uniformly coated on their exterior and interior surfaces. After the conveyer turns to carry the coated stents back toward the loading area, the rotating stents pass again through the coating spray, downstream of the initial coating location, thereby increasing the efficient utilization of the coating material. The conveyer then advances the coated stents to an unloading area for removal before the holders return to the stent loading area to receive new stents.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: January 10, 2006
    Assignee: Boston Scientific SciMed, Inc.
    Inventors: Maria Palasis, Wendy Naimark, Tim Mickley, Toby Freyman
  • Publication number: 20050181016
    Abstract: The invention is directed to an apparatus, such as a medical device, having a surface coated or covered with a decellularized extracellular matrix or having a component comprising the decellularized extracellular matrix for implantation into a subject, preferably a human. In one embodiment of the invention, a decellularized extracellular matrix is used to form a bodily implant such as a vein, an artery, an esophagus, or a ventricular restraining device. In some embodiments of the invention, the decellularized extracellular matrix is configured to be a time released therapeutic. In another embodiment of the invention, a decellularized extracellular matrix forms an aneurysm treatment device, such as an aneurysm coil, a seal, a pouch, or a filler. In a further embodiment of the invention, decellularized extracellular matrix is used to embolize lesions, tumors, or vessels.
    Type: Application
    Filed: March 10, 2005
    Publication date: August 18, 2005
    Inventors: Toby Freyman, Wendy Naimark, Maria Palasis
  • Publication number: 20050177106
    Abstract: The present invention relates to a medical device and method for treating the body tissue of a patient. The present invention is also directed to a method of making the medical device and a method of using the medical device. More particularly, the invention relates to a medical device which is inserted into the body for delivery of therapeutic patches to the surface of a body lumen, organ or cavity. Specifically, the medical device has an umbrella-like or a basket-like expandable assembly; and a therapeutic patch. The expandable assembly is capable of changing from a retracted position to an expanded position. The expandable assembly can be self-expanding or non-self-expanding. In one embodiment, the medical device comprises an elongated member; an umbrella-like expandable assembly which has a plurality of wire elements; and a therapeutic patch.
    Type: Application
    Filed: March 9, 2005
    Publication date: August 11, 2005
    Inventors: Wendy Naimark, Maria Palasis
  • Patent number: 6923996
    Abstract: A method for furnishing a therapeutic-agent-containing medical device is provided. The method comprises: (a) providing a reactive layer comprising a cross-linking agent on a medical device surface; and (b) subsequently applying a polymer-containing layer, which comprises a polymer and a therapeutic agent, over the reactive layer. The cross-linking agent interacts with the polymer to form a cross-linked polymeric region that comprises the therapeutic agent. Examples of medical devices include implantable or insertable medical devices, for example, catheters, balloon, cerebral aneurysm filler coils, arterio-venous shunts and stents.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: August 2, 2005
    Assignee: SciMed Life Systems, Inc.
    Inventors: Samuel J. Epstein, Wendy Naimark
  • Publication number: 20050158450
    Abstract: An improved method and apparatus for high-volume production of coated stents with highly uniform stent coatings using a roll coating technique is provided. In a first embodiment, uncoated stents are placed onto rotating stent holders with automated stent handling equipment. The holders are mounted on an endless conveyer belt which advances the stents toward a stent coater. As the stents advance through the coater, the holders rotate, thereby rolling the stents about their longitudinal axes as coating material is sprayed toward them, ensuring the stents are uniformly coated on their exterior and interior surfaces. After the conveyer turns to carry the coated stents back toward the loading area, the rotating stents pass again through the coating spray, downstream of the initial coating location, thereby increasing the efficient utilization of the coating material.
    Type: Application
    Filed: March 8, 2005
    Publication date: July 21, 2005
    Inventors: Maria Palasis, Wendy Naimark, Tim Mickley, Toby Freyman
  • Publication number: 20050158359
    Abstract: A method for furnishing a therapeutic-agent-containing medical device is provided. The method comprises: (a) providing a reactive layer comprising a cross-linking agent on a medical device surface; and (b) subsequently applying a polymer-containing layer, which comprises a polymer and a therapeutic agent, over the reactive layer. The cross-linking agent interacts with the polymer to form a cross-linked polymeric region that comprises the therapeutic agent. Examples of medical devices include implantable or insertable medical devices, for example, catheters, balloon, cerebral aneurysm filler coils, arterio-venous shunts and stents.
    Type: Application
    Filed: January 12, 2005
    Publication date: July 21, 2005
    Inventors: Samuel Epstein, Wendy Naimark
  • Publication number: 20050124571
    Abstract: The present invention is directed to the use of microparticles to protect the pharmaceutical effectiveness of a pharmaceutically active agent. According to one embodiment, a pharmaceutically acceptable suspension is provided that comprises microparticles and a pharmaceutically active agent. This pharmaceutically acceptable suspension is then exposed to a component or condition that is incompatible with the pharmaceutically active agent, such that the microparticles provide a pharmaceutical effectiveness that is greater than it would have been in the absence of the microparticles. Preferably, the microparticles result in a pharmaceutical effectiveness of the pharmaceutically active agent that is at least 10% greater than the pharmaceutical effectiveness of the pharmaceutically active agent would have been in the absence of the microparticles. Polymer microparticles, such as polystyrene microparticles, are one preferred class of microparticles. The microparticles preferably range from 0.
    Type: Application
    Filed: October 15, 2004
    Publication date: June 9, 2005
    Inventors: Wendy Naimark, Maria Palasis
  • Publication number: 20050113767
    Abstract: Many conventional pharmaceutical articles contain seemingly inert components that come into contact with a pharmaceutically active material during use, which contact substantially reduces the pharmaceutical effectiveness of the pharmaceutically active material. The invention described herein concerns various modifications to these incompatible components, which are effective to diminish the reduction in pharmaceutical effectiveness.
    Type: Application
    Filed: August 2, 2004
    Publication date: May 26, 2005
    Inventors: Maria Palasis, Wendy Naimark, Timothy Mickley, Louis Ellis
  • Patent number: 6893431
    Abstract: The present invention relates to a medical device and method for treating the body tissue of a patient. The present invention is also directed to a method of making the medical device and a method of using the medical device. More particularly, the invention relates to a medical device which is inserted into the body for delivery of therapeutic patches to the surface of a body lumen, organ or cavity. Specifically, the medical device has an umbrella-like or a basket-like expandable assembly; and a therapeutic patch. The expandable assembly is capable of changing from a retracted position to an expanded position. The expandable assembly can be self-expanding or non-self-expanding. In one embodiment, the medical device comprises an elongated member; an umbrella-like expandable assembly which has a plurality of wire elements; and a therapeutic patch.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: May 17, 2005
    Assignee: SciMed Life Systems, Inc.
    Inventors: Wendy Naimark, Maria Palasis
  • Patent number: 6887857
    Abstract: The present invention is directed to the use of microparticles to protect the pharmaceutical effectiveness of a pharmaceutically active agent. According to one embodiment, a pharmaceutically acceptable suspension is provided that comprises microparticles and a pharmaceutically active agent. This pharmaceutically acceptable suspension is then exposed to a component or condition that is incompatible with the pharmaceutically active agent, such that the microparticles provide a pharmaceutical effectiveness that is greater than it would have been in the absence of the microparticles. Preferably, the microparticles result in a pharmaceutical effectiveness of the pharmaceutically active agent that is at least 10% greater than the pharmaceutical effectiveness of the pharmaceutically active agent would have been in the absence of the micro particles. Polymer microparticles, such as polystyrene microparticles, are one preferred class of microparticles. The microparticles preferably range from 0.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: May 3, 2005
    Assignee: SciMed Life Systems, Inc.
    Inventors: Wendy Naimark, Maria Palasis
  • Publication number: 20050079274
    Abstract: An improved method for high-volume production of coated stents with highly uniform stent coatings using a roll coating technique is provided. In a first embodiment, uncoated stents are placed onto rotating stent holders with automated stent handling equipment. The holders are mounted on an endless conveyer belt which advances the stents toward a stent coater. As the stents advance through the coater, the holders rotate, thereby rolling the stents about their longitudinal axes as coating material is sprayed toward them, ensuring the stents are uniformly coated on their exterior and interior surfaces. After the conveyer turns to carry the coated stents back toward the loading area, the rotating stents pass again through the coating spray, downstream of the initial coating location, thereby increasing the efficient utilization of the coating material. The conveyer then advances the coated stents to an unloading area for removal before the holders return to the stent loading area to receive new stents.
    Type: Application
    Filed: October 14, 2003
    Publication date: April 14, 2005
    Inventors: Maria Palasis, Wendy Naimark, Tim Mickley, Toby Freyman