Patents by Inventor Weng F Yap

Weng F Yap has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9305911
    Abstract: Embodiments of methods for forming microelectronic device packages include forming a trench on a surface of a package body in an area adjacent to where first and second package surface conductors will be (or have been) formed on both sides of the trench. The method also includes forming the first and second package surface conductors to electrically couple exposed ends of various combinations of device-to-edge conductors. The trench may be formed using laser cutting, drilling, sawing, etching, or another suitable technique. The package surface conductors may be formed by dispensing (e.g., coating, spraying, inkjet printing, aerosol jet printing, stencil printing, or needle dispensing) one or more conductive materials on the package body surface between the exposed ends of the device-to-edge conductors.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: April 5, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Michael B. Vincent, Jason R. Wright, Weng F. Yap
  • Patent number: 9299670
    Abstract: A stacked microelectronic package can comprise a package body having an external vertical package sidewall, a plurality of microelectronic devices embedded within the package body, and package edge conductors electrically coupled to the plurality of microelectronic devices and extending to the external vertical package sidewall. A cavity is formed on an external surface of the package body between a first one of the package edge conductors and a second one of the package edge conductors. Electrically conductive material is in the cavity and in electrical contact with a first and a second one of the package edge conductors, wherein the conductive material in the cavity is within planform dimensions of the microelectronic package.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 29, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weng F. Yap, Michael B. Vincent, Jason R. Wright
  • Patent number: 9281284
    Abstract: System-in-Packages (SiPs) and methods for producing SiPs are provided. In one embodiment, the above-described SiP fabrication method includes the step or process of forming a through-hole in a core package, the core package containing an electrically-conducive routing feature exposed at a sidewall surface of the through-hole. A leaded component is positioned adjacent the core package such that an elongated lead of the leaded component extends into the through-hole. An electrically-conductive material, such as solder, is then applied into the through hole to electrically couple the elongated lead of the leaded component to the electrically-conductive routing feature of the core package.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: March 8, 2016
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Weng F. Yap, Zhiwei Gong
  • Patent number: 9281286
    Abstract: Microelectronic packages and methods for fabricating microelectronic packages having texturized solder pads, which can improve solder joint reliability, are provided. In one embodiment, the method includes forming a texturized dielectric region having a texture pattern, such as a hatch pattern, in an under-pad dielectric layer. A texturized solder pad is produced over the texturized dielectric region. The texturized solder pad has a solder contact surface to which the texture pattern is transferred such that the area of the solder contact surface is increased relative to a non-texturized solder pad of equivalent dimensions.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 8, 2016
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Weng F. Yap, Alan J. Magnus
  • Patent number: 9281293
    Abstract: Microelectronic packages having layered interconnect structures are provided, as are methods for the fabrication thereof. In one embodiment, the method includes forming a first plurality of interconnect lines in ohmic contact with a first bond pad row provided on a semiconductor. A dielectric layer is deposited over the first plurality of interconnect lines, the first bond pad row, and a second bond pad row adjacent the first bond pad row. A trench via is then formed in the dielectric layer to expose at least the second bond pad row therethrough. A second plurality of interconnect lines is formed in ohmic contact with the second bond pad row within the trench via. The second plurality of interconnect lines extends over the first bond pad row and is electrically isolated therefrom by the dielectric layer to produce at least a portion of the layered interconnect structure.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: March 8, 2016
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Alan J. Magnus, Trung Q. Duong, Zhiwei Gong, Scott M. Hayes, Douglas G. Mitchell, Michael B. Vincent, Jason R. Wright, Weng F. Yap
  • Publication number: 20160064341
    Abstract: Microelectronic packages and methods for fabricating microelectronic packages having texturized solder pads, which can improve solder joint reliability, are provided. In one embodiment, the method includes forming a texturized dielectric region having a texture pattern, such as a hatch pattern, in an under-pad dielectric layer. A texturized solder pad is produced over the texturized dielectric region. The texturized solder pad has a solder contact surface to which the texture pattern is transferred such that the area of the solder contact surface is increased relative to a non-texturized solder pad of equivalent dimensions.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 3, 2016
    Inventors: WENG F. YAP, ALAN J. MAGNUS
  • Patent number: 9257419
    Abstract: Embodiments of a method for fabricating System-in-Packages (SiPs) are provided, as are embodiments of a SiP. In one embodiment, the method includes producing a first package including a first molded package body having a sidewall. A first leadframe is embedded within the first molded package body and having a first leadframe lead exposed through the sidewall. In certain implementations, a semiconductor die may also be encapsulated within the first molded package body. A Surface Mount Device (SMD) is mounted to the sidewall of the first molded package body such that a first terminal of the SMD is in ohmic contact with the first leadframe lead exposed through the sidewall.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: February 9, 2016
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventor: Weng F. Yap
  • Patent number: 9257393
    Abstract: Fan-Out Wafer Level Packages (FO-WLPs) and methods for fabricating FO-WLPs containing Embedded Ground Planes (EGPs) and backside EGP interconnect structures are provided. In one embodiment, the method includes electrically coupling an EGP to a backside terminal of a first microelectronic device through a backside EGP interconnect structure. A molded package body is formed around the first microelectronic device, the EGP, and the EGP interconnect structure. The molded package body has a frontside at which the EGP is exposed. One or more Redistribution Layers are formed over the frontside of the molded packaged body and contain at least one interconnect line electrically coupled to the backside contact through the EGP and the backside EGP interconnect structure.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: February 9, 2016
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Zhiwei Gong, Weng F. Yap
  • Publication number: 20160005628
    Abstract: A wafer level packaging method entails providing electronic devices and providing a platform structure having cavities extending through the platform structure. The platform structure is mounted to a temporary support. One or more electronic devices are placed in the cavities with an active side of each electronic device facing the temporary support. The platform structure and the electronic devices are encapsulated in an encapsulation material to produce a panel assembly. Redistribution layers may be formed over the panel assembly, after which the panel assembly may be separated into a plurality of integrated electronic packages. The platform structure may be formed from a semiconductor material, and platform segments within each package provide a fan-out region for conductive interconnects, as well as provide a platform for a metallization layer and/or for forming through silicon vias.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 7, 2016
    Inventors: Weng F. Yap, Michael B. Vincent
  • Publication number: 20150371960
    Abstract: System-in-Packages (SiPs) and methods for producing SiPs are provided. In one embodiment, the above-described SiP fabrication method includes the step or process of forming a through-hole in a core package, the core package containing an electrically-conducive routing feature exposed at a sidewall surface of the through-hole. A leaded component is positioned adjacent the core package such that an elongated lead of the leaded component extends into the through-hole. An electrically-conductive material, such as solder, is then applied into the through hole to electrically couple the elongated lead of the leaded component to the electrically-conductive routing feature of the core package.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 24, 2015
    Inventors: WENG F. YAP, ZHIWEI GONG
  • Publication number: 20150357270
    Abstract: An integrated electronic package includes an integrated circuit (IC) die and conductive discrete components. Electrical interconnects are formed directly between bond pads on an active side of the IC die and contacts on the conductive discrete components without an intervening lead frame. The IC die, conductive discrete components and electrical interconnects are embedded in an encapsulation material. Contact surfaces of at least some of the conductive discrete components are exposed from the encapsulation material and can be attached to a printed circuit board in order to mount the integrated electronic package to the printed circuit board.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 10, 2015
    Inventor: Weng F. Yap
  • Publication number: 20150348920
    Abstract: Microelectronic packages and methods for fabricating microelectronic packages are provided. In one embodiment, the method includes producing a plurality of vertically-elongated contacts in ohmic contact with interconnect lines contained within one or more redistribution layers built over the frontside of a semiconductor die. A molded radiofrequency (RF) separation or stand-off layer is formed over the redistribution layers through which the plurality of vertically-elongated contacts extend. An antenna structure is fabricated or otherwise provided over the molded RF stand-off layer and electrically coupled to the semiconductor die through at least one of the plurality of vertically-elongated contacts.
    Type: Application
    Filed: August 13, 2015
    Publication date: December 3, 2015
    Applicant: FREESCALE SEMICONDUCTOR INC.
    Inventors: WENG F. YAP, EDUARD J. PABST
  • Publication number: 20150333028
    Abstract: Wafer level packages and methods for producing wafer level packages having non-wettable solder collars are provided. In one embodiment, the method includes forming solder mask openings in a solder mask layer exposing regions of a patterned metal level underlying the solder mask layer. Before or after forming solder mask openings in the solder mask layer, non-wettable solder collars are produced extending partially over the exposed regions of the patterned metal level. Solder balls are deposited onto the non-wettable solder collars and into the solder mask openings such that circumferential clearances are provided around base portions of the solder balls and sidewalls of the solder mask layer defining the solder mask openings.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 19, 2015
    Inventors: WENG F. YAP, ALAN J. MAGNUS
  • Publication number: 20150270233
    Abstract: Wafer level packages and methods for producing wafer level packages having delamination-resistant redistribution layers are provided. In one embodiment, the method includes building inner redistribution layers over a semiconductor die. Inner redistribution layers include a body of dielectric material containing metal routing features. A routing-free dielectric block is formed in the body of dielectric material and is uninterrupted by the metal routing features. An outer redistribution layer is produced over the inner redistribution layers and contains a metal plane, which is patterned to include one or more outgassing openings overlying the routing-free dielectric block. The routing-free dielectric block has a minimum width, length, and depth each at least twice the thickness of the outer redistribution layer.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 24, 2015
    Inventors: MICHAEL B. VINCENT, TRUNG Q. DUONG, ZHIWEI GONG, SCOTT M. HAYES, ALAN J. MAGNUS, DOUGLAS G. MITCHELL, EDUARD J. PABST, JASON R. WRIGHT, WENG F. YAP
  • Publication number: 20150262981
    Abstract: Embodiments of a method for fabricating System-in-Packages (SiPs) are provided, as are embodiments of a SiP. In one embodiment, the method includes producing a first package including a first molded package body having a sidewall. A first leadframe is embedded within the first molded package body and having a first leadframe lead exposed through the sidewall. In certain implementations, a semiconductor die may also be encapsulated within the first molded package body. A Surface Mount Device (SMD) is mounted to the sidewall of the first molded package body such that a first terminal of the SMD is in ohmic contact with the first leadframe lead exposed through the sidewall.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 17, 2015
    Inventor: WENG F. YAP
  • Publication number: 20150255371
    Abstract: A semiconductor package includes a semiconductor die having an active face and dielectric layers disposed on the active face of the semiconductor die. At least one opening is formed through the dielectric layers and extends from a non-bond pad area of the active face to an exterior surface of the dielectric layers. An electrically conductive layer is formed in the opening and is in physical contact with the active face of the semiconductor die. A thermally conductive material fills the opening to form a thermal via for dissipating heat away from the semiconductor die.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 10, 2015
    Inventors: Weng F. Yap, Scott M. Hayes
  • Patent number: 9129981
    Abstract: Microelectronic packages and methods for fabricating microelectronic packages are provided. In one embodiment, the method includes producing a plurality of vertically-elongated contacts in ohmic contact with interconnect lines contained within one or more redistribution layers built over the frontside of a semiconductor die. A molded radiofrequency (RF) separation or stand-off layer is formed over the redistribution layers through which the plurality of vertically-elongated contacts extend. An antenna structure is fabricated or otherwise provided over the molded RF stand-off layer and electrically coupled to the semiconductor die through at least one of the plurality of vertically-elongated contacts.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: September 8, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Weng F. Yap, Eduard J. Pabst
  • Publication number: 20150194388
    Abstract: Shielded device packages and related fabrication methods are provided. An exemplary device package includes one or more electrical components, a molding compound overlying the one or more electrical components, a conductive interconnect structure within the molding compound, a conductive frame structure laterally surrounding the one or more electrical components and the interconnect structure, and a shielding structure overlying the one or more electrical components. The shielding structure is electrically connected to the frame structure and at least a portion of the molding compound resides between the shielding structure and the one or more electrical components.
    Type: Application
    Filed: January 7, 2014
    Publication date: July 9, 2015
    Inventors: EDUARD J. PABST, SERGIO P. PACHECO, WENG F. YAP
  • Publication number: 20150162310
    Abstract: Embodiments of methods for forming microelectronic device packages include forming a trench on a surface of a package body in an area adjacent to where first and second package surface conductors will be (or have been) formed on both sides of the trench. The method also includes forming the first and second package surface conductors to electrically couple exposed ends of various combinations of device-to-edge conductors. The trench may be formed using laser cutting, drilling, sawing, etching, or another suitable technique. The package surface conductors may be formed by dispensing (e.g., coating, spraying, inkjet printing, aerosol jet printing, stencil printing, or needle dispensing) one or more conductive materials on the package body surface between the exposed ends of the device-to-edge conductors.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 11, 2015
    Inventors: MICHAEL B. VINCENT, JASON R. WRIGHT, WENG F. YAP
  • Publication number: 20150145108
    Abstract: Microelectronic packages and methods for fabricating microelectronic packages are provided. In one embodiment, the method includes producing a plurality of vertically-elongated contacts in ohmic contact with interconnect lines contained within one or more redistribution layers built over the frontside of a semiconductor die. A molded radiofrequency (RF) separation or stand-off layer is formed over the redistribution layers through which the plurality of vertically-elongated contacts extend. An antenna structure is fabricated or otherwise provided over the molded RF stand-off layer and electrically coupled to the semiconductor die through at least one of the plurality of vertically-elongated contacts.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Inventors: WENG F. YAP, EDUARD J. PABST