Patents by Inventor Weng F Yap

Weng F Yap has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150137381
    Abstract: Microelectronic packages and methods for fabricating microelectronic packages having optical mask layers are provided. In one embodiment, the method includes building redistribution layers over the frontside of a semiconductor die. The redistribution layers includes a body of dielectric material in which a plurality of interconnect lines are formed. An optical mask layer is formed over the frontside of the semiconductor die and at least a portion of the redistribution layers. The optical mask layer has an opacity greater than the opacity of the body of dielectric material and blocks or obscures visual observation of an interior portion of the microelectronic package through the redistribution layers.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Inventors: WENG F. YAP, SCOTT M. HAYES, ALAN J. MAGNUS
  • Patent number: 9025340
    Abstract: Embodiments of methods for forming microelectronic device packages include forming a trench on a surface of a package body between exposed ends of first and second device-to-edge conductors, and forming a package surface conductor in the trench to electrically couple the first and second device-to-edge conductors. In one embodiment, the package surface conductor is formed by first forming a conductive material layer over the package surface, where the conductive material layer substantially fills the trench, and subsequently removing portions of the conductive material layer from the package surface adjacent to the trench. In another embodiment, the package surface conductor is formed by dispensing one or more conductive materials in the trench between the first and second exposed ends (e.g., using a technique such as spraying, inkjet printing, aerosol jet printing, stencil printing, or needle dispense). Excess conductive material may then be removed from the package surface adjacent to the trench.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 5, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jason R. Wright, Michael B. Vincent, Weng F. Yap
  • Patent number: 9024429
    Abstract: Microelectronic packages and methods for fabricating microelectronic packages are provided. The fabrication method may be carried-out utilizing a preformed panel having a frontside cavity and a backside cavity in which first and second microelectronic devices are positioned, respectively. One or more frontside RDL layers are produced over the frontside of the preformed panel in ohmic contact with or otherwise electrically coupled to the first microelectronic device. Similarly, one or more backside RDL layers are formed over the backside of the preformed panel in ohmic contact with or otherwise electrically coupled to the second microelectronic device. A frontside contact array is produced over the frontside of the preformed panel and electrically coupled to at least the first microelectronic device through the frontside RDL layers. Lastly, the preformed panel is singulated to yield a microelectronic package including a package body in which the first and second microelectronic devices are embedded.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: May 5, 2015
    Assignee: Freescale Semiconductor Inc.
    Inventor: Weng F. Yap
  • Publication number: 20150115454
    Abstract: Microelectronic packages having layered interconnect structures are provided, as are methods for the fabrication thereof. In one embodiment, the method includes forming a first plurality of interconnect lines in ohmic contact with a first bond pad row provided on a semiconductor. A dielectric layer is deposited over the first plurality of interconnect lines, the first bond pad row, and a second bond pad row adjacent the first bond pad row. A trench via is then formed in the dielectric layer to expose at least the second bond pad row therethrough. A second plurality of interconnect lines is formed in ohmic contact with the second bond pad row within the trench via. The second plurality of interconnect lines extends over the first bond pad row and is electrically isolated therefrom by the dielectric layer to produce at least a portion of the layered interconnect structure.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Inventors: Alan J. Magnus, Trung Q. Duong, Zhiwei Gong, Scott M. Hayes, Douglas G. Mitchell, Michael B. Vincent, Jason R. Wright, Weng F. Yap
  • Publication number: 20150092377
    Abstract: Embodiments of methods for forming microelectronic device packages include forming a trench on a surface of a package body between exposed ends of first and second device-to-edge conductors, and forming a package surface conductor in the trench to electrically couple the first and second device-to-edge conductors. In one embodiment, the package surface conductor is formed by first forming a conductive material layer over the package surface, where the conductive material layer substantially fills the trench, and subsequently removing portions of the conductive material layer from the package surface adjacent to the trench. In another embodiment, the package surface conductor is formed by dispensing one or more conductive materials in the trench between the first and second exposed ends (e.g., using a technique such as spraying, inkjet printing, aerosol jet printing, stencil printing, or needle dispense). Excess conductive material may then be removed from the package surface adjacent to the trench.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Inventors: JASON R. WRIGHT, Michael B. Vincent, Weng F. Yap
  • Publication number: 20150061139
    Abstract: Microelectronic packages and methods for fabricating microelectronic packages are provided. The fabrication method may be carried-out utilizing a preformed panel having a frontside cavity and a backside cavity in which first and second microelectronic devices are positioned, respectively. One or more frontside RDL layers are produced over the frontside of the preformed panel in ohmic contact with or otherwise electrically coupled to the first microelectronic device. Similarly, one or more backside RDL layers are formed over the backside of the preformed panel in ohmic contact with or otherwise electrically coupled to the second microelectronic device. A frontside contact array is produced over the frontside of the preformed panel and electrically coupled to at least the first microelectronic device through the frontside RDL layers. Lastly, the preformed panel is singulated to yield a microelectronic package including a package body in which the first and second microelectronic devices are embedded.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Inventor: WENG F. YAP
  • Patent number: 8963318
    Abstract: A packaged semiconductor device includes a substrate including a first major surface, a second major surface, first vias running between the first major surface and the second major surface, first contact pads contacting the first vias at the first major surface, second contact pads contacting the first vias at the second major surface, and an opening between the first major surface and the second major surface. A first integrated circuit (IC) die is positioned in the opening in the substrate. Electrical connections are formed between the second IC die and the second contact pads. A first conductive layer is over the first contact pads and contact pads on the first IC die. Encapsulating material is on the second major surface of the substrate around the first IC die, the second IC die, the electrical connections, and between edges of the opening and edges of the first IC die.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 24, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Weng F. Yap
  • Publication number: 20140353840
    Abstract: A method for fabricating a stacked microelectronic device includes attaching a first package layer to a second package layer to form stacked microelectronic layers. Saw streets of the first package layer overlie and are aligned with saw streets of the second package layer. The first and second package layers include respective edge connectors formed between the saw streets and electronic components in the first and second package layers. A through package via is formed in one of the saw streets of the first and second package layers. The via is filled with conductive material. The stacked package layers are singulated along the saw streets in a manner that retains a portion of the conductive material to form a sidewall connector between at least two of the edge connectors.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: WENG F. YAP, MICHAEL B. VINCENT
  • Publication number: 20140264945
    Abstract: A stacked microelectronic package can comprise a package body having an external vertical package sidewall, a plurality of microelectronic devices embedded within the package body, and package edge conductors electrically coupled to the plurality of microelectronic devices and extending to the external vertical package sidewall. A cavity is formed on an external surface of the package body between a first one of the package edge conductors and a second one of the package edge conductors. Electrically conductive material is in the cavity and in electrical contact with a first and a second one of the package edge conductors, wherein the conductive material in the cavity is within planform dimensions of the microelectronic package.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: WENG F. YAP, MICHAEL B. VINCENT, JASON R. WRIGHT
  • Publication number: 20140239497
    Abstract: A packaged semiconductor device includes a substrate including a first major surface, a second major surface, first vias running between the first major surface and the second major surface, first contact pads contacting the first vias at the first major surface, second contact pads contacting the first vias at the second major surface, and an opening between the first major surface and the second major surface. A first integrated circuit (IC) die is positioned in the opening in the substrate. Electrical connections are formed between the second IC die and the second contact pads. A first conductive layer is over the first contact pads and contact pads on the first IC die. Encapsulating material is on the second major surface of the substrate around the first IC die, the second IC die, the electrical connections, and between edges of the opening and edges of the first IC die.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Inventor: WENG F. YAP
  • Patent number: 8741666
    Abstract: Methods relating to intermetallic compound testing of copper-based wire bonds are provided. For example, a method is generally provided for testing the integrity of wire bonds formed between copper-containing wires and the bond pads of a plurality of microelectronic devices. In one embodiment, the method includes selecting at least one wire bond sample produced in conjunction with the wire bonds formed between the copper-containing wires and the bond pads of the microelectronic devices. One or more copper-containing wires of the wire bond sample are contacted with a liquid copper etchant, which contains a sulfate-based oxidizing agent dissolved in a solvent, to cause separation of the copper-containing wires from the bond pads and exposure of the underlying wire-pad interfaces. Intermetallic compounds formed at the exposed wire-pad interfaces are then measured to assess the integrity of the wire bonds.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: June 3, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Weng F Yap, Lai Cheng Law, Boh Kid Wong