Patents by Inventor Wenhua Zhang

Wenhua Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190071593
    Abstract: Disclosed is a highly fluorinated silicone resin and a method for making the same. The silicone resin includes M, T, optionally D and optionally Q type monomers and is crosslinkable. The resin has a fluorine content of at least 55 weight percent and a very low refractive index of less than 1.4. The resin is formed in a one step process and requires use of very specific solvents. Preferably the resin includes a first T type monomer having a fluoroalkane group to provide the fluorine to the resin. Preferably the resin includes a second T type monomer having a (meth)acryloyl function to enable cross-linking. The resin forms an effective liquid optically clear adhesive. The resin can be further combined with highly fluorinated (meth)acrylate monomers or perfluoro polyethers to provide even lower refractive indexes and improved adhesive properties.
    Type: Application
    Filed: November 2, 2018
    Publication date: March 7, 2019
    Inventors: Bahram Issari, Wenhua Zhang, John G. Woods, Shengqian Kong, Yayun Liu, Jiangbo Ouyang, Li Kang
  • Patent number: 10183860
    Abstract: A method for fabricating a multiple MEMS device includes providing a semiconductor substrate having a first and second MEMS device, and an encapsulation wafer with a first cavity and a second cavity, which includes at least one channel. The first MEMS is encapsulated within the first cavity and the second MEMS device is encapsulated within the second cavity. These devices is encapsulated within a first encapsulation environment at a first air pressure, and encapsulating the first MEMS device within the first cavity at the first air pressure. The second MEMS device within the second cavity is then subjected to a second encapsulating environment at a second air pressure via the channel of the second cavity.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: January 22, 2019
    Assignee: mCube Inc.
    Inventors: Wenhua Zhang, Shingo Yoneoka
  • Patent number: 10132630
    Abstract: A multi-axis integrated MEMS inertial sensor device. The device can include an integrated 3-axis gyroscope and 3-axis accelerometer on a single chip, creating a 6-axis inertial sensor device. The structure is spatially configured with efficient use of the design area of the chip by adding the accelerometer device to the center of the gyroscope device. The design architecture can be a rectangular or square shape in geometry, which makes use of the whole chip area and maximizes the sensor size in a defined area. The MEMS is centered in the package, which is beneficial to the sensor's temperature performance. Furthermore, the electrical bonding pads of the integrated multi-axis inertial sensor device can be configured in the four corners of the rectangular chip layout. This configuration guarantees design symmetry and efficient use of the chip area.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: November 20, 2018
    Assignee: mCube Inc.
    Inventors: Terrence Lee, Wenhua Zhang, Sudheer Sridharamurthy, Shingo Yoneoka
  • Publication number: 20180298222
    Abstract: Provided herein are metal conductive compositions with improved conductivity. The improved conductivity is attributable to the addition of a sintering agent and a polymer emulsion.
    Type: Application
    Filed: June 20, 2018
    Publication date: October 18, 2018
    Inventors: Wenhua ZHANG, Qinyan Zhu, John G. Woods, Hong (Dorothy) Jiang, Junjun Wu, Mark Jason
  • Patent number: 10046964
    Abstract: A method for fabricating an integrated MEMS-CMOS device. The method can include providing a substrate member having a surface region and forming a CMOS IC layer having at least one CMOS device overlying the surface region. A bottom isolation layer can be formed overlying the CMOS IC layer and a shielding layer and a top isolation layer can be formed overlying a portion of bottom isolation layer. The bottom isolation layer can include an isolation region between the top isolation layer and the shielding layer. A MEMS layer overlying the top isolation layer, the shielding layer, and the bottom isolation layer, and can be etched to form at least one MEMS structure having at least one movable structure and at least one anchored structure.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: August 14, 2018
    Assignee: mCube Inc.
    Inventors: Te-Hsi “Terrence” Lee, Sudheer S. Sridharamurthy, Shingo Yoneoka, Wenhua Zhang
  • Patent number: 10036635
    Abstract: A MEMS rate sensor device. In an embodiment, the sensor device includes a MEMS rate sensor configured overlying a CMOS substrate. The MEMS rate sensor can include a driver set, with four driver elements, and a sensor set, with six sensing elements, configured for 3-axis rotational sensing. This sensor architecture allows low damping in driving masses and high damping in sensing masses, which is ideal for a MEMS rate sensor design. Low driver damping is beneficial to MEMS rate power consumption and performance, with low driving electrical potential to achieve high oscillation amplitude.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: July 31, 2018
    Assignee: mCube Inc.
    Inventors: Wenhua Zhang, Sudheer Sridharamurthy, Shingo Yoneoka, Terrence Lee
  • Publication number: 20180134839
    Abstract: The present invention relates to curable novel resins and prepolymers, methods of manufacture and compositions made therefrom. Particularly useful applications include one drop fill sealant used in liquid crystal assembly. In particular, the inventive resins and prepolymers and compositions are useful in the assembly of LCD panels.
    Type: Application
    Filed: January 14, 2018
    Publication date: May 17, 2018
    Inventors: Laxmisha M. Sridhar, Baoshan Gao, Jing Zhou, Qin Li, Wenhua Zhang, Shengian Kong, John G. Woods, Anthony F. Jacobine
  • Patent number: 9950921
    Abstract: An integrated circuit includes a substrate member having a surface region and a CMOS IC layer overlying the surface region. The CMOS IC layer has at least one CMOS device. The integrated circuit also includes a bottom isolation layer overlying the CMOS IC layer, a shielding layer overlying a portion of the bottom isolation layer, and a top isolation layer overlying a portion of the bottom isolation layer. The bottom isolation layer includes an isolation region between the top isolation layer and the shielding layer. The integrated circuit also has a MEMS layer overlying the top isolation layer, the shielding layer, and the bottom isolation layer. The MEMS layer includes at least one MEMS structure having at least one movable structure and at least one anchored structure. The at least one anchored structure is coupled to a portion of the top isolation layer, and the at least one movable structure overlies the shielding layer.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: April 24, 2018
    Assignee: mCube Inc.
    Inventors: Te-Hsi “Terrence” Lee, Sudheer S. Sridharamurthy, Shingo Yoneoka, Wenhua Zhang
  • Patent number: 9850409
    Abstract: A debondable adhesive composition comprising (A) the hydrosilation reaction product of the reaction between the vinyl groups on 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane and the terminal Si—H hydrogens on a silane or siloxane having terminal Si—H hydrogens, (B) a cross-linker for the hydrosilation reaction product, and (C) a metal catalyst and/or a radical initiator is provided.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: December 26, 2017
    Assignees: Henkel AG & Co. KGaA, Henkel IP & Holding GmbH
    Inventors: Wenhua Zhang, Xiaoyan Huang, Shengqian Kong, Xiao Allison Yue, Stephen Hynes, Jiangbo Ouyang, Chunyu Sun
  • Publication number: 20170345989
    Abstract: A cross-plane flexible micro-TEG with hundreds of pairs of thermoelectric pillars formed via electroplating, microfabrication, and substrate transferring processes is provided herein. Typically, fabrication is conducted on a Si substrate, which can be easily realized by commercial production line. The fabricated micro-TEG transferred to the flexible layer from the Si substrate. Fabrication methods provided herein allow fabrication of main TEG components including bottom interconnectors, thermoelectric pillars, and top interconnectors by electroplating. Such flexible micro-TEGs provide high output power density due to high density of thermoelectric pillars and very low internal resistance of electroplated components. The flexible micro-TEG can achieve a power per unit area of 4.5 mW cm?2 at a temperature difference of ˜50 K, which is comparable to performance of flexible TEGs developed by screen printing.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 30, 2017
    Inventors: Wenhua ZHANG, Dongyan XU
  • Patent number: 9725304
    Abstract: A semiconductor device having multiple MEMS (micro-electro mechanical system) devices includes a semiconductor substrate having a first MEMS device and a second MEMS device, and an encapsulation substrate having a top portion and sidewalls forming a first cavity and a second cavity. The encapsulation substrate is bonded to the semiconductor substrate at the sidewalls to encapsulate the first MEMS device in the first cavity and to encapsulate the second MEMS device in the second cavity. The second cavity includes at least one access channel at a recessed region in a sidewall of the encapsulation substrate adjacent to an interface between the encapsulation substrate and the semiconductor substrate. The access channel is covered by a thin film. The first cavity is at a first atmospheric pressure and the second cavity is at a second atmospheric pressure. The second air pressure is different from the first air pressure.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: August 8, 2017
    Assignee: mCube Inc.
    Inventors: Wenhua Zhang, Shingo Yoneoka
  • Publication number: 20170081574
    Abstract: The present invention relates to one-component UV and thermal curable temporary adhesives for use in high temperature applications, and particularly to adhesives for the temporary attachment of one substrate to another substrate, the adhesives comprising (i) the partial hydrosilylation reaction product of the reaction between the vinyl groups on 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane and the terminal Si—H hydrogens on a silane or siloxane having terminal Si—H hydrogens, and (ii) a photo and/or thermal radical cure initiator. Also encompassed are assemblies including such an adhesive and methods of using the adhesives.
    Type: Application
    Filed: December 7, 2016
    Publication date: March 23, 2017
    Inventors: Stephen Hynes, Chunyu Sun, Jiangbo Ouyang, John Gregory Woods, Bahram lssari, Shengqian Kong, Yayun Liu, Wenhua Zhang
  • Patent number: 9464899
    Abstract: A gyroscope device and method of operation therefor. The gyroscope device can include a power input, a charge pump portion coupled to the power input, a selection mechanism, a switching mechanism, an oscillator driving mechanism coupled to the switching mechanism, and an oscillator coupled to the charge pump portion and to the oscillator driving mechanism. The method of operation can include providing a first or second selection signal from a selection mechanism associated with the outputting of a DC input power or DC output power from a switching mechanism, respectively. These signals, along with an oscillator driving signal from an oscillator driving mechanism, can be used to initiate and maintain oscillation of an oscillator at a steady-state frequency within a predetermined range of frequencies.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: October 11, 2016
    Assignee: mCube Inc.
    Inventor: Wenhua Zhang
  • Publication number: 20160068720
    Abstract: A debondable adhesive composition comprises (A) the hydrosilation reaction product of the reaction between the vinyl groups on 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetra-siloxane and the terminal Si—H hydrogens on a silane or siloxane having terminal Si—H hydrogens, (B) a cross-linker for the hydrosilation reaction product, and (C) a metal catalyst and/or a radical initiator. In further embodiments, this invention is an assembly of a substrate and a carrier for the substrate in which the debondable adhesive composition is disposed between the substrates, and a method for fabricating that assembly. The debondable adhesive composition maintains its adhesion at temperatures of 300° C. or greater, and is mechanically debondable at room temperature at a force less than 5N/25 mm.
    Type: Application
    Filed: November 13, 2015
    Publication date: March 10, 2016
    Inventors: Wenhua Zhang, Xiaoyan Huang, Shengqian Kong, Xiao Allison Yue, Stephen Hynes, Jiangbo Ouyang, Chunyu Sun
  • Publication number: 20160052777
    Abstract: An integrated circuit includes a substrate member having a surface region and a CMOS IC layer overlying the surface region. The CMOS IC layer has at least one CMOS device. The integrated circuit also includes a bottom isolation layer overlying the CMOS IC layer, a shielding layer overlying a portion of the bottom isolation layer, and a top isolation layer overlying a portion of the bottom isolation layer. The bottom isolation layer includes an isolation region between the top isolation layer and the shielding layer. The integrated circuit also has a MEMS layer overlying the top isolation layer, the shielding layer, and the bottom isolation layer. The MEMS layer includes at least one MEMS structure having at least one movable structure and at least one anchored structure. The at least one anchored structure is coupled to a portion of the top isolation layer, and the at least one movable structure overlies the shielding layer.
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: TE-HSI "TERRENCE" LEE, SUDHEER S. SRIDHARAMURTHY, SHINGO YONEOKA, WENHUA ZHANG
  • Publication number: 20160039666
    Abstract: A semiconductor device having multiple MEMS (micro-electro mechanical system) devices includes a semiconductor substrate having a first MEMS device and a second MEMS device, and an encapsulation substrate having a top portion and sidewalls forming a first cavity and a second cavity. The encapsulation substrate is bonded to the semiconductor substrate at the sidewalls to encapsulate the first MEMS device in the first cavity and to encapsulate the second MEMS device in the second cavity. The second cavity includes at least one access channel at a recessed region in a sidewall of the encapsulation substrate adjacent to an interface between the encapsulation substrate and the semiconductor substrate. The access channel is covered by a thin film. The first cavity is at a first atmospheric pressure and the second cavity is at a second atmospheric pressure. The second air pressure is different from the first air pressure.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 11, 2016
    Inventors: WENHUA ZHANG, Shingo Yoneoka
  • Publication number: 20160039667
    Abstract: A method for fabricating a multiple MEMS device includes providing a semiconductor substrate having a first and second MEMS device, and an encapsulation wafer with a first cavity and a second cavity, which includes at least one channel. The first MEMS is encapsulated within the first cavity and the second MEMS device is encapsulated within the second cavity. These devices is encapsulated within a first encapsulation environment at a first air pressure, and encapsulating the first MEMS device within the first cavity at the first air pressure. The second MEMS device within the second cavity is then subjected to a second encapsulating environment at a second air pressure via the channel of the second cavity.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 11, 2016
    Inventors: WENHUA ZHANG, SHINGO YONEOKA
  • Patent number: 9174838
    Abstract: A method for fabricating a multiple MEMS device. A semiconductor substrate having a first and second MEMS device, and an encapsulation wafer with a first cavity and a second cavity, which includes at least one channel, can be provided. The first MEMS can be encapsulated within the first cavity and the second MEMS device can be encapsulated within the second cavity. These devices can be encapsulated within a provided first encapsulation environment at a first air pressure, encapsulating the first MEMS device within the first cavity at the first air pressure. The second MEMS device within the second cavity can then be subjected to a provided second encapsulating environment at a second air pressure via the channel of the second cavity.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: November 3, 2015
    Assignee: mCube Inc.
    Inventors: Wenhua Zhang, Shingo Yoneoka
  • Patent number: 9075079
    Abstract: An integrated MEMS inertial sensor device. The device includes a MEMS inertial sensor overlying a CMOS substrate. The MEMS inertial sensor includes a drive frame coupled to the surface region via at least one drive spring, a sense mass coupled to the drive frame via at least a sense spring, and a sense electrode disposed underlying the sense mass. The device also includes at least one pair of quadrature cancellation electrodes disposed within a vicinity of the sense electrode, wherein each pair includes an N-electrode and a P-electrode.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: July 7, 2015
    Assignee: MCUBE INC.
    Inventors: Shingo Yoneoka, Sudheer Sridharamurthy, Wenhua Zhang, Te-Hsi Terrence Lee
  • Publication number: 20150090034
    Abstract: A gyroscope device and method of operation therefor. The gyroscope device can include a power input, a charge pump portion coupled to the power input, a selection mechanism, a switching mechanism, an oscillator driving mechanism coupled to the switching mechanism, and an oscillator coupled to the charge pump portion and to the oscillator driving mechanism. The method of operation can include providing a first or second selection signal from a selection mechanism associated with the outputting of a DC input power or DC output power from a switching mechanism, respectively. These signals, along with an oscillator driving signal from an oscillator driving mechanism, can be used to initiate and maintain oscillation of an oscillator at a steady-state frequency within a predetermined range of frequencies.
    Type: Application
    Filed: September 25, 2014
    Publication date: April 2, 2015
    Inventor: WENHUA ZHANG