Patents by Inventor Wenyu Xu

Wenyu Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11069800
    Abstract: A semiconductor device includes a single electron transistor (SET) having an island region, a bottom source/drain region under the island region, and a top source/drain region over the island region, a first gap between the bottom source/drain region and the island region, a second gap between the top source/drain region and the island region, and a gate structure on a side of the island region.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: July 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Xin Miao, Wenyu Xu, Chen Zhang
  • Patent number: 11062965
    Abstract: Various embodiments disclose a method for fabricating vertical transistors. In one embodiment, a structure is formed comprising at least a first substrate, an insulator layer on the substrate, a first doped layer on the insulator layer, at least one fin structure in contact with the doped layer, a dielectric layer surrounding a portion of the fin structure, a gate layer on the dielectric layer, a second doped layer in contact with the fin structure, a first contact area in contact with the second doped layer, and at least a first interconnect in contact with the first contact area. The structure is flipped bonded to a second substrate. The first substrate and the insulator layer are removed to expose the first doped layer. A second contact area is formed in contact with the first doped layer. At least a second interconnect is formed in contact with the second contact area.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: July 13, 2021
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Xin Miao, Wenyu Xu, Chen Zhang
  • Patent number: 11062959
    Abstract: Embodiments of the invention are directed to a first nanosheet transistor device and a second nanosheet transistor device formed on a substrate. The first nanosheet transistor includes a first inner spacer having a first inner spacer thickness, along with a first gate dielectric having a first gate dielectric thickness. The second nanosheet transistor includes a second inner spacer having a second inner spacer thickness, along with a second gate dielectric having a second gate dielectric thickness. The first inner spacer thickness is greater than the second inner spacer thickness. The first gate dielectric thickness is greater than the second gate dielectric thickness. The first inner spacer thickness combined with the first gate dielectric thickness defines a first combined thickness. The second inner spacer thickness combined with the second gate dielectric thickness defines a second combined thickness. The first combined thickness is substantially equal to the second combined thickness.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: July 13, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Xin Miao, Wenyu Xu, Chen Zhang
  • Patent number: 11049935
    Abstract: Methods are provided to construct field-effect transistors comprising low-resistance metallic gate structures. A field-effect transistor includes a nanosheet stack and a metal gate which covers a gate region of the nanosheet stack. The nanosheet stack includes nanosheet channel layers and an etch stop layer disposed above an upper nanosheet channel layer. The metal gate includes a work function metal which encapsulates the nanosheet channel layers, and a gate electrode disposed above and in contact with the work function metal. An upper surface of the work function metal is recessed to be substantially coplanar with the etch stop layer. The gate electrode has a resistivity which is less than a resistivity of the work function metal. The etch stop layer protects the portion of the work function metal disposed between the etch stop layer and the upper nanosheet channel layer from being etched when recessing the work function metal.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: June 29, 2021
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Chen Zhang, Wenyu Xu, Xin Miao
  • Patent number: 11038015
    Abstract: Methods are provided to construct field-effect transistors comprising low-resistance metallic gate structures. A field-effect transistor includes a nanosheet stack and a metal gate which covers a gate region of the nanosheet stack. The nanosheet stack includes nanosheet channel layers and an etch stop layer disposed above an upper nanosheet channel layer. The metal gate includes a work function metal which encapsulates the nanosheet channel layers, and a gate electrode disposed above and in contact with the work function metal. An upper surface of the work function metal is recessed to be substantially coplanar with the etch stop layer. The gate electrode has a resistivity which is less than a resistivity of the work function metal. The etch stop layer protects the portion of the work function metal disposed between the etch stop layer and the upper nanosheet channel layer from being etched when recessing the work function metal.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: June 15, 2021
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Chen Zhang, Wenyu Xu, Xin Miao
  • Publication number: 20210159409
    Abstract: Metal-assisted chemical etching is employed to form a three-dimensional (3D) resistive random access memory (ReRAM) in which the etching aspect ratio limit is extended and the top trench and bottom trench CD uniformity is improved. The 3D ReRAM includes a metal catalyst located between a bitline electrode and a selector device. Further, the 3D ReRAM includes vertically stacked and spaced apart replacement wordline electrodes that are located adjacent to the bitline electrode.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Xin Miao, Kangguo Cheng, Wenyu Xu, Chen Zhang
  • Publication number: 20210151583
    Abstract: A semiconductor device structure and a method for fabricating the semiconductor device structure are disclosed. The method includes receiving a substrate stack including at least one semiconductor fin, the substrate stack including: a bottom source/drain epi region directly below the semiconductor fin; a vertical gate structure directly above the bottom source/drain epi region and in contact with the semiconductor fin; a first inter-layer dielectric in contact with a sidewall of the vertical gate structure; and a second interlayer-layer dielectric directly above and contacting a top surface of the first inter-layer dielectric. The method further including: etching a top region of the semiconductor fin and the gate structure thereby creating a recess directly above the top region of the semiconductor fin and the vertical gate structure; and forming in the recess a top source/drain epi region directly above, and contacting, a top surface of the semiconductor fin.
    Type: Application
    Filed: December 28, 2020
    Publication date: May 20, 2021
    Inventors: Wenyu XU, Ruilong Xie, Pietro MONTANINI, Hemanth JAGANNATHAN
  • Publication number: 20210151601
    Abstract: A method of fabricating a semiconductor device is described. The method includes forming a nanosheet stack on a substrate, the nanosheet stack includes nanosheet channel layers. A gate is formed around the nanosheet channel layers of the nanosheet stack. A strained material is formed along a sidewall surface of the gate. The strained material is configured to create strain in the nanosheet channel layers of the nanosheet stack.
    Type: Application
    Filed: December 29, 2020
    Publication date: May 20, 2021
    Inventors: Xin Miao, Kangguo Cheng, Wenyu XU, Chen Zhang
  • Patent number: 11011411
    Abstract: A semiconductor wafer includes a substrate. The substrate includes a first substrate region doped with a first dopant and a second substrate region doped with a second dopant. The semiconductor wafer further includes a buried oxide (BOX) layer formed on the substrate and a channel layer formed above the BOX layer. A first transistor is operably disposed on the substrate in the first substrate region and a second transistor is operably disposed on the substrate in the second substrate region. First doped source and drain structures electrically connected to the substrate in the first substrate region and separated by portions of the channel layer and the BOX layer. Second doped source and drain structures electrically connected to the substrate in the second substrate region and separated by portions of the channel layer and the BOX layer.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: May 18, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chen Zhang, Xin Miao, Wenyu Xu, Kangguo Cheng
  • Patent number: 10991798
    Abstract: Embodiments of the invention are directed to a method of forming a nanosheet transistor. A non-limiting example of the method includes forming a nanosheet stack having alternating layers of channel nanosheets and sacrificial nanosheets, wherein each of the layers of channel nanosheets includes a first type of semiconductor material, and wherein each of the layers of sacrificial nanosheets includes a second type of semiconductor material. The layers of sacrificial nanosheets are removed from the nanosheet stack, and layers of replacement sacrificial nanosheets are formed in the spaces that were occupied by the sacrificial nanosheets. Each of the layers of replacement sacrificial nanosheets includes a first type of non-semiconductor material.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: April 27, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wenyu Xu, Chen Zhang, Kangguo Cheng, Xin Miao
  • Publication number: 20210119043
    Abstract: A method of forming a vertical fin field effect transistor device is provided. The method includes forming a vertical fin and fin template on a bottom source/drain layer, wherein the fin template is on the vertical fin. The method further includes forming a gate structure on the vertical fin and fin template, and forming a top spacer layer on the gate structure. The method further includes removing the fin template to form an opening in the top spacer layer, and removing a portion of a gate electrode of the gate structure to form a cavity; and removing a portion of a gate dielectric layer of the gate structure to form a groove around the vertical fin.
    Type: Application
    Filed: December 29, 2020
    Publication date: April 22, 2021
    Inventors: Kangguo Cheng, Chen Zhang, Xin Miao, Wenyu Xu
  • Publication number: 20210118878
    Abstract: Devices and methods are provided for forming single diffusion break isolation structures for integrated circuit devices including gate-all-around FET devices such as nanosheet FET devices and nanowire FET devices. For example, a semiconductor integrated circuit device includes first and second gate-all-around field-effect transistor devices disposed in first and second device regions, respectively, of a semiconductor substrate. A single diffusion break isolation structure is disposed between the first and second device regions. The single diffusion break isolation structure includes a dummy gate structure disposed on the semiconductor substrate between a first source/drain layer of the first gate-all-around field-effect transistor device and a second source/drain layer of the second gate all-around field-effect transistor device. The single diffusion break isolation structure is configured to electrically isolate the first and second source/drain layers.
    Type: Application
    Filed: December 29, 2020
    Publication date: April 22, 2021
    Inventors: Wenyu Xu, Xin Miao, Chen Zhang, Kangguo Cheng
  • Patent number: 10985073
    Abstract: A method for fabricating a semiconductor device includes forming a semiconductor structure including a substrate, a first vertical fin and a second vertical fin longitudinally spaced from the first vertical fin with each of the first and second vertical fin having a hardmask cap, and a bottom spacer layer on the substrate. The method further includes forming first and second bottom source/drains within the substrate respectively beneath the first and second vertical fins, forming first and second top source/drains respectively on the first and second vertical fins, forming a vertical oxide pillar between the first and second vertical fins, removing a portion of the oxide pillar to reduce a cross-sectional dimension to define a lower recessed region, and depositing a metal gate material about the first and second vertical fins wherein portions of the metal gate material are disposed within the recessed region of the oxide pillar.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: April 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Wenyu Xu, Brent Alan Anderson, Zuoguang Liu
  • Patent number: 10985161
    Abstract: Devices and methods are provided for forming single diffusion break isolation structures for integrated circuit devices including gate-all-around FET devices such as nanosheet FET devices and nanowire FET devices. For example, a semiconductor integrated circuit device includes first and second gate-all-around field-effect transistor devices disposed in first and second device regions, respectively, of a semiconductor substrate. A single diffusion break isolation structure is disposed between the first and second device regions. The single diffusion break isolation structure includes a dummy gate structure disposed on the semiconductor substrate between a first source/drain layer of the first gate-all-around field-effect transistor device and a second source/drain layer of the second gate all-around field-effect transistor device. The single diffusion break isolation structure is configured to electrically isolate the first and second source/drain layers.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: April 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Wenyu Xu, Xin Miao, Chen Zhang, Kangguo Cheng
  • Publication number: 20210111195
    Abstract: The subject disclosure relates to high mobility complementary metal-oxide-semiconductor (CMOS) devices and techniques for forming the CMOS devices with fins formed directly on the insulator. According to an embodiment, a method for forming such a high mobility CMOS device can comprise forming, via a first epitaxial growth of a first material, first pillars within first trenches formed within a dielectric layer, wherein the dielectric layer is formed on a silicon substrate, and wherein the first pillars comprise first portions with defects and second portions without the defects. The method can further comprise forming second trenches within a first region of the dielectric layer, and further forming second pillars within the second trenches via a second epitaxial growth of one or more second materials using the second portions of the first pillars as seeds for the second epitaxial growth.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 15, 2021
    Inventors: Xin Miao, Chen Zhang, Kangguo Cheng, Wenyu Xu
  • Patent number: 10971522
    Abstract: The subject disclosure relates to high mobility complementary metal-oxide-semiconductor (CMOS) devices and techniques for forming the CMOS devices with fins formed directly on the insulator. According to an embodiment, a method for forming such a high mobility CMOS device can comprise forming, via a first epitaxial growth of a first material, first pillars within first trenches formed within a dielectric layer, wherein the dielectric layer is formed on a silicon substrate, and wherein the first pillars comprise first portions with defects and second portions without the defects. The method can further comprise forming second trenches within a first region of the dielectric layer, and further forming second pillars within the second trenches via a second epitaxial growth of one or more second materials using the second portions of the first pillars as seeds for the second epitaxial growth.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: April 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xin Miao, Chen Zhang, Kangguo Cheng, Wenyu Xu
  • Patent number: 10971585
    Abstract: Embodiments of the invention are directed to a nano sheet semiconductor device fabrication method that includes forming a gate spacer along a gate region of the nanosheet FET device. Channel nanosheet is formed such that each one has a desired final channel nanosheet width dimension (Wf). An inner spacer is formed between the channel nanosheets. Forming the gate spacer and the inner spacer includes, subsequent to forming the channel nanosheets to the desired Wf, conformally depositing a layer of the spacer material along a sidewall of the gate region, along sidewalls of the channel nanosheets, and within a space between the channel nanosheets. The gate spacer is formed from a portion of the layer of the spacer material along the sidewall of the gate region. The inner spacer is formed from a portion of the layer of the spacer material within the space between the channel nanosheets.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: April 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Choonghyun Lee, Injo Ok, Soon-cheon Seo, Wenyu Xu
  • Patent number: 10964601
    Abstract: A method of fabricating a vertical fin field effect transistor with a merged top source/drain, including, forming a source/drain layer at the surface of a substrate, forming a plurality of vertical fins on the source/drain layer; forming protective spacers on each of the plurality of vertical fins, forming a sacrificial plug between two protective spacers, forming a filler layer on the protective spacers not in contact with the sacrificial plug, and selectively removing the sacrificial plug to form an isolation region trench between the two protective spacers.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: March 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Xin Miao, Wenyu Xu, Chen Zhang
  • Patent number: 10964602
    Abstract: A method of fabricating a vertical fin field effect transistor with a merged top source/drain, including, forming a source/drain layer at the surface of a substrate, forming a plurality of vertical fins on the source/drain layer; forming protective spacers on each of the plurality of vertical fins, forming a sacrificial plug between two protective spacers, forming a filler layer on the protective spacers not in contact with the sacrificial plug, and selectively removing the sacrificial plug to form an isolation region trench between the two protective spacers.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: March 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Xin Miao, Wenyu Xu, Chen Zhang
  • Patent number: 10957783
    Abstract: A method for fabricating a semiconductor device including a vertical transistor includes etching a longitudinal end portion of a fin on a substrate to form a gap exposing the substrate, forming a top source/drain region, and forming, around a horizontal portion and a vertical portion of a bottom source/drain region disposed on the substrate, a contact wrapping in a region including a location where the longitudinal end portion of the fin was removed by the etching.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Wenyu Xu, Chen Zhang, Kangguo Cheng, Xin Miao