Patents by Inventor Werner Juengling

Werner Juengling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110193172
    Abstract: Disclosed are methods and devices depicting fabrication of non-planar access devices having fins and narrow trenches, among which is a method that includes wet etching a conductor to form a recessed region and subsequently etching the conductor to form gates on the fins. The wet etching may include formation of recesses which are may be backfilled with a fill material to form spacers on the conductor. In some embodiments, portions of a plug may be removed during the wet etch to form overhanging spacers to provide further protection of the conductor during the dry etch.
    Type: Application
    Filed: February 9, 2010
    Publication date: August 11, 2011
    Applicant: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20110193157
    Abstract: A non-planar transistor having floating body structures and methods for fabricating the same are disclosed. In certain embodiments, the transistor includes a fin having upper and lower doped regions. The upper doped regions may form a source and drain separated by a shallow trench formed in the fin. During formation of the fin, a hollow region may be formed underneath the shallow trench, isolating the source and drain. An oxide may be formed in the hollow region to form a floating body structure, wherein the source and drain are isolated from each other and the substrate formed below the fin. In some embodiments, independently bias gates may be formed adjacent to walls of the fin. In other embodiments, electrically coupled gates may be formed adjacent to the walls of the fin.
    Type: Application
    Filed: February 8, 2010
    Publication date: August 11, 2011
    Applicant: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7993988
    Abstract: Methods for fabricating a non-planar transistor. Fin field effect transistors (finFETs) are often built around a fin (e.g., a tall, thin semiconductive member). During manufacturing, a fin may encounter various mechanical stresses, e.g., inertial forces during movement of the substrate and fluid forces during cleaning steps. If the forces on the fin are too large, the fin may fracture and possibly render a transistor inoperative. Supporting one side of a fin before forming the second side of a fin creates stability in the fin structure, thereby counteracting many of the mechanical stresses incurred during manufacturing.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: August 9, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7986576
    Abstract: A method of equilibrating digit lines, a memory array, device, system and wafer for digit lines configured in an open digit line architecture. The digit lines are equilibrated by coupling a terminated end of a first digit line to an equilibration reference and coupling an unterminated end of a second digit line to the terminated end of the first digit line. The memory array is configured with the first and second digit lines arranged directly adjacent to each other.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: July 26, 2011
    Assignee: Micron Technoloy, Inc.
    Inventor: Werner Juengling
  • Patent number: 7981736
    Abstract: Disclosed are methods of forming transistors. In one embodiment, the transistors are formed by forming a plurality of elliptical bases in a substrate and forming fins form the elliptical bases. The transistors are formed within the fin such that they may be used as access devices in a memory array.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: July 19, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20110169063
    Abstract: The invention includes a semiconductor structure having a gateline lattice surrounding vertical source/drain regions. In some aspects, the source/drain regions can be provided in pairs, with one of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The source/drain regions extending to the digit line can have the same composition as the source/drain regions extending to the memory storage devices, or can have different compositions from the source/drain regions extending to the memory storage devices. The invention also includes methods of forming semiconductor structures. In exemplary methods, a lattice comprising a first material is provided to surround repeating regions of a second material. At least some of the first material is then replaced with a gateline structure, and at least some of the second material is replaced with vertical source/drain regions.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling
  • Patent number: 7969776
    Abstract: Disclosed are methods and devices, among which is a device that includes a first semiconductor fin having a first gate, a second semiconductor fin adjacent the first semiconductor fin and having a second gate, and a third gate extending between the first semiconductor fin and the second semiconductor fin. In some embodiments, the third gate may not be electrically connected to the first gate or the second gate.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20110143528
    Abstract: Disclosed are methods, systems and devices, including a method that includes the acts of forming a semiconductor fin, forming a sacrificial material adjacent the semiconductor fin, covering the sacrificial material with a dielectric material, forming a cavity by removing the sacrificial material from under the dielectric material, and forming a gate in the cavity.
    Type: Application
    Filed: February 15, 2011
    Publication date: June 16, 2011
    Applicant: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20110133270
    Abstract: A recessed transistor construction is formed between a first access transistor construction and a second access transistor construction to provide isolation between the access transistor constructions of a memory device. In some embodiments, a gate of the recessed transistor construction is grounded. In an embodiment, the access transistor constructions are recess access transistors. In an embodiment, the memory device is a DRAM. In another embodiment, the memory device is a 4.5F2 DRAM cell.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 9, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling
  • Publication number: 20110127596
    Abstract: A memory array is provided that includes a transistor having two active gates sharing a source, a drain, and a channel of the transistor. One of the active gates may be coupled to a volatile memory portion of a memory cell, such as a DRAM cell, and the other active gate may be coupled to a non-volatile memory portion, for example, a charge storage node such as a SONOS cell. Methods of operating the memory array are provided that include transferring data from the volatile memory portions to the non-volatile memory portions, transferring data from the non-volatile memory portions to the volatile memory portions, and erasing the non-volatile memory portions of a row of memory cells.
    Type: Application
    Filed: February 11, 2011
    Publication date: June 2, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Howard C. Kirsch, Charles Ingalls, Werner Juengling
  • Publication number: 20110081757
    Abstract: Semiconductor memory devices having vertical access devices are disclosed. In some embodiments, a method of forming the device includes providing a recess in a semiconductor substrate that includes a pair of opposed side walls and a floor extending between the opposed side walls. A dielectric layer may be deposited on the side walls and the floor of the recess. A conductive film may be formed on the dielectric layer and processed to selectively remove the film from the floor of the recess and to remove at least a portion of the conductive film from the opposed sidewalls.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 7, 2011
    Inventor: Werner Juengling
  • Patent number: 7915659
    Abstract: A method that includes forming a semiconductor fin, forming a sacrificial material adjacent the semiconductor fin, covering the sacrificial material with a dielectric material, forming a cavity by removing the sacrificial material from under the dielectric material, and forming a gate in the cavity. System and devices are also provided.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: March 29, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7915692
    Abstract: The invention includes a semiconductor structure having a gateline lattice surrounding vertical source/drain regions. In some aspects, the source/drain regions can be provided in pairs, with one of the sourcedrain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The source/drain regions extending to the digit line can have the same composition as the source/drain regions extending to the memory storage devices, or can have different compositions from the sourcedrain regions extending to the memory storage devices. The invention also includes methods of forming semiconductor structures. In exemplary methods, a lattice comprising a first material is provided to surround repeating regions of a second material. At least some of the first material is then replaced with a gateline structure, and at least some of the second material is replaced with vertical source/drain regions.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: March 29, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7902598
    Abstract: An isolation transistor having a grounded gate is formed between a first access transistor construction and a second access transistor construction to provide isolation between the access transistor constructions of a memory device. In an embodiment, the access transistor constructions are recess access transistors. In an embodiment, the memory device is a DRAM. In another embodiment, the memory device is a 4.5F2 DRAM cell.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: March 8, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7898857
    Abstract: A memory array is provided that includes a transistor having two active gates sharing a source, a drain, and a channel of the transistor. One of the active gates may be coupled to a volatile memory portion of a memory cell, such as a DRAM cell, and the other active gate may be coupled to a non-volatile memory portion, for example, a charge storage node such as a SONOS cell. Methods of operating the memory array are provided that include transferring data from the volatile memory portions to the non-volatile memory portions, transferring data from the non-volatile memory portions to the volatile memory portions, and erasing the non-volatile memory portions of a row of memory cells.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: March 1, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Howard C. Kirsch, Charles Ingalls, Werner Juengling
  • Publication number: 20110042755
    Abstract: In an embodiment of the present invention, a method comprises patterning a first plurality of semiconductor structures in an array portion of a semiconductor substrate using a first photolithographic mask. The method further comprises patterning a second plurality of semiconductor structures over a logic portion of a semiconductor substrate using a second photolithographic mask. The method further comprises patterning a sacrificial layer over the first plurality of semiconductor structures using the second photolithographic mask. The sacrificial layer is patterned simultaneously with the second plurality of semiconductor structures.
    Type: Application
    Filed: November 5, 2010
    Publication date: February 24, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling
  • Publication number: 20110034024
    Abstract: An embodiment of a system and method produces a random half pitched interconnect layout. A first normal-pitch mask and a second normal-pitch mask are created from a metallization layout having random metal shapes. The lines and spaces of the first mask are printed at normal pitch and then the lines are shrunk to half pitch on mask material. First spacers are used to generate a half pitch dimension along the outside of the lines of the first mask. The mask material outside of the first spacer pattern is partially removed. The spacers are removed and the process is repeated with the second mask. The mask material remains at the locations of first set of spacers and/or the second set of spacers to create a half pitch interconnect mask with constant spaces.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Applicant: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20100327336
    Abstract: Disclosed are embodiments for a container capacitor structure in which at least two container capacitors, e.g., an inner and outer container capacitor, are made concentric and nested with respect to one another. The nested capacitors are formed in one embodiment by defining a hole in a dielectric layer for the nested container capacitors in the vicinity of two capacitor contact plugs. An outer capacitor plate is formed by etching back poly 1 to leave it substantially on the vertical edges of the hole and in contact with one of the plugs. At least one sacrificial sidewall is formed on the poly 1, and poly 2 is deposited over the sidewalls to form an inner capacitor plate in contact with the other plug. The structure is planarized, the sacrificial sidewalls are removed, a capacitor dielectric is formed, and is topped with poly 3. Additional structures such as a protective layer (to prevent poly 1-to-poly 2 shorting) and a conductive layer (to strap the plugs to their respective poly layers) can also be used.
    Type: Application
    Filed: September 3, 2010
    Publication date: December 30, 2010
    Applicant: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20100323481
    Abstract: Disclosed are methods of forming transistors. In one embodiment, the transistors are formed by forming a plurality of elliptical bases in a substrate and forming fins form the elliptical bases. The transistors are formed within the fin such that they may be used as access devices in a memory array.
    Type: Application
    Filed: August 30, 2010
    Publication date: December 23, 2010
    Applicant: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20100322025
    Abstract: A method of equilibrating digit lines, a memory array, device, system and wafer for digit lines configured in an open digit line architecture. The digit lines are equilibrated by coupling a terminated end of a first digit line to an equilibration reference and coupling an unterminated end of a second digit line to the terminated end of the first digit line. The memory array is configured with the first and second digit lines arranged directly adjacent to each other.
    Type: Application
    Filed: August 27, 2010
    Publication date: December 23, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling