Patents by Inventor Werner Juengling

Werner Juengling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7842558
    Abstract: According to another embodiment of the present invention, a method comprises patterning a first plurality of semiconductor structures in an array portion of a semiconductor substrate using a first photolithographic mask. The method further comprises patterning a second plurality of semiconductor structures over a logic portion of a semiconductor substrate using a second photolithographic mask. The method further comprises patterning a sacrificial layer over the first plurality of semiconductor structures using the second photolithographic mask. The sacrificial layer is patterned simultaneously with the second plurality of semiconductor structures.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: November 30, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20100276749
    Abstract: The invention includes a semiconductor structure having U-shaped transistors formed by etching a semiconductor substrate. In an embodiment, the source/drain regions of the transistors are provided at the tops of pairs of pillars defined by crossing trenches in the substrate. One pillar is connected to the other pillar in the pair by a ridge that extends above the surrounding trenches. The ridge and lower portions of the pillars define U-shaped channels on opposite sides of the U-shaped structure, facing a gate structure in the trenches on those opposite sides, forming a two sided surround transistor. Optionally, the space between the pillars of a pair is also filled with gate electrode material to define a three-sided surround gate transistor. One of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The invention also includes methods of forming semiconductor structures.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 4, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling
  • Patent number: 7824983
    Abstract: Methods of isolating gates in a semiconductor structure. In one embodiment, isolation is achieved using a spacer material in combination with fins having substantially vertical sidewalls. In another embodiment, etch characteristics of various materials utilized in fabrication of the semiconductor structure are used to increase an effective gate length (“Leffective”) and a field gate oxide. In yet another embodiment, a V-shaped trench is formed in the semiconductor structure to increase the Leffective and the field gate oxide. Semiconductor structures formed by these methods are also disclosed.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: November 2, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7816262
    Abstract: An embodiment of a system and method produces a random half pitched interconnect layout. A first normal-pitch mask and a second normal-pitch mask are created from a metallization layout having random metal shapes. The lines and spaces of the first mask are printed at normal pitch and then the lines are shrunk to half pitch on mask material. First spacers are used to generate a half pitch dimension along the outside of the lines of the first mask. The mask material outside of the first spacer pattern is partially removed. The spacers are removed and the process is repeated with the second mask. The mask material remains at the locations of first set of spacers and/or the second set of spacers to create a half pitch interconnect mask with constant spaces. In an embodiment, the half pitch interconnect mask is used to create a metallization interconnect layer with area of constant spacing and area of metallization.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: October 19, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7807541
    Abstract: Disclosed are embodiments for a container capacitor structure in which at least two container capacitors, e.g., an inner and outer container capacitor, are made concentric and nested with respect to one another. The nested capacitors are formed in one embodiment by defining a hole in a dielectric layer for the nested container capacitors in the vicinity of two capacitor contact plugs. An outer capacitor plate is formed by etching back poly 1 to leave it substantially on the vertical edges of the hole and in contact with one of the plugs. At least one sacrificial sidewall is formed on the poly 1, and poly 2 is deposited over the sidewalls to form an inner capacitor plate in contact with the other plug. The structure is planarized, the sacrificial sidewalls are removed, a capacitor dielectric is formed, and is topped with poly 3. Additional structures such as a protective layer (to prevent poly 1-to-poly 2 shorting) and a conductive layer (to strap the plugs to their respective poly layers) can also be used.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: October 5, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7808042
    Abstract: Disclosed are methods, systems and devices, including a device having a digit line and a plurality of transistors each having one terminal connected to the digit line and another terminal disposed on alternating sides of the digit line. In some embodiments, each transistor among the plurality of transistors comprises a fin.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: October 5, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20100238697
    Abstract: Disclosed are methods, systems and devices including local data lines. In some embodiments, the device includes a local data line connected to a plurality of access devices, at least a portion of a capacitor plate connected to the plurality of access devices, and a global data line connected to the local data line by the capacitor plate.
    Type: Application
    Filed: June 2, 2010
    Publication date: September 23, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling
  • Patent number: 7800965
    Abstract: A method of equilibrating digit lines, a memory array, device, system and wafer for digit lines configured in an open digit line architecture. The digit lines are equilibrated by coupling a terminated end of a first digit line to an equilibration reference and coupling an unterminated end of a second digit line to the terminated end of the first digit line. The memory array is configured with the first and second digit lines arranged directly adjacent to each other.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: September 21, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20100230733
    Abstract: According to one embodiment of the present invention, a method of forming an apparatus comprises forming a plurality of deep trenches and a plurality of shallow trenches in a first region of a substrate. At least one of the shallow trenches is positioned between two deep trenches. The plurality of shallow trenches and the plurality of deep trenches are parallel to each other. The method further comprises depositing a layer of conductive material over the first region and a second region of the substrate. The method further comprises etching the layer of conductive material to define a plurality of lines separated by a plurality of gaps over the first region of the substrate, and a plurality of active device elements over the second region of the substrate. The method further comprises masking the second region of the substrate.
    Type: Application
    Filed: May 24, 2010
    Publication date: September 16, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling
  • Patent number: 7772633
    Abstract: The invention includes a semiconductor structure having U-shaped transistors formed by etching a semiconductor substrate. In an embodiment, the source/drain regions of the transistors are provided at the tops of pairs of pillars defined by crossing trenches in the substrate. One pillar is connected to the other pillar in the pair by a ridge that extends above the surrounding trenches. The ridge and lower portions of the pillars define U-shaped channels on opposite sides of the U-shaped structure, facing a gate structure in the trenches on those opposite sides, forming a two sided surround transistor. Optionally, the space between the pillars of a pair is also filled with gate electrode material to define a three-sided surround gate transistor. One of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The invention also includes methods of forming semiconductor structures.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7742324
    Abstract: Disclosed are methods, systems and devices, including a device having a fin field-effect transistor with a first terminal, a second terminal, and two gates. In some embodiments, the device includes a local data line connected to the first terminal, at least a portion of a capacitor plate connected to the second terminal, and a global data line connected to the local data line by the capacitor plate.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: June 22, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7736980
    Abstract: According to one embodiment of the present invention, a method of forming an apparatus comprises forming a plurality of deep trenches and a plurality of shallow trenches in a first region of a substrate. At least one of the shallow trenches is positioned between two deep trenches. The plurality of shallow trenches and the plurality of deep trenches are parallel to each other. The method further comprises depositing a layer of conductive material over the first region and a second region of the substrate. The method further comprises etching the layer of conductive material to define a plurality of lines separated by a plurality of gaps over the first region of the substrate, and a plurality of active device elements over the second region of the substrate. The method further comprises masking the second region of the substrate.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: June 15, 2010
    Assignee: MICRON Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20100133609
    Abstract: Methods of isolating gates in a semiconductor structure. In one embodiment, isolation is achieved using a spacer material in combination with fins having substantially vertical sidewalls. In another embodiment, etch characteristics of various materials utilized in fabrication of the semiconductor structure are used to increase an effective gate length (“Leffective”) and a field gate oxide. In yet another embodiment, a V-shaped trench is formed in the semiconductor structure to increase the Leffective and the field gate oxide. Semiconductor structures formed by these methods are also disclosed.
    Type: Application
    Filed: February 4, 2010
    Publication date: June 3, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Brent D. Gilgen, Paul Grisham, Werner Juengling, Richard H. Lane
  • Publication number: 20100066440
    Abstract: Disclosed is a device having a transistor that includes a source, a drain, a channel region extending between the source and the drain, a gate disposed near the channel region, and a conductive member disposed opposite of the channel region from the gate. The conductive member may not overlap the source, the drain, or both the source and the drain.
    Type: Application
    Filed: September 15, 2008
    Publication date: March 18, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling
  • Publication number: 20100062579
    Abstract: Methods for forming a semiconductor device include forming self-aligned trenches, in which a first set of trenches is used to align a second set trenches. Methods taught herein can be used as a pitch doubling technique, and may therefore enhance device integration. Further, employing a very thin CMP stop layer, and recessing surrounding materials by about an equal amount to the thickness of the CMP stop layer, provides improved planarity at the surface of the device.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Werner Juengling, Richard Lane
  • Publication number: 20090294840
    Abstract: Methods of isolating gates in a semiconductor structure. In one embodiment, isolation is achieved using a spacer material in combination with fins having substantially vertical sidewalls. In another embodiment, etch characteristics of various materials utilized in fabrication of the semiconductor structure are used to increase the effective gate length (“Leffective”) and the field gate oxide. In yet another embodiment, a V-shaped trench is formed in the semiconductor structure to increase the Leffective and the field gate oxide. Semiconductor structures formed by these methods are also disclosed.
    Type: Application
    Filed: June 2, 2008
    Publication date: December 3, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Brent D. Gilgen, Paul Grisham, Werner Juengling, Richard H. Lane
  • Publication number: 20090294842
    Abstract: Disclosed are methods and devices, among which is a method that includes forming a lower conductive material on a substrate, forming a stop material on the substrate, forming a sacrificial material on the substrate, etching the sacrificial material with an etch that is selective to the sacrificial material and selective against the stop material, and etching the lower conductive material.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner JUENGLING
  • Publication number: 20090298246
    Abstract: Methods for fabricating a non-planar transistor. Fin field effect transistors (finFETs) are often built around a fin (e.g., a tall, thin semiconductive member). During manufacturing, a fin may encounter various mechanical stresses, e.g., inertial forces during movement of the substrate and fluid forces during cleaning steps. If the forces on the fin are too large, the fin may fracture and possibly render a transistor inoperative. Supporting one side of a fin before forming the second side of a fin creates stability in the fin structure, thereby counteracting many of the mechanical stresses incurred during manufacturing.
    Type: Application
    Filed: August 10, 2009
    Publication date: December 3, 2009
    Applicant: Micron Technologies, Inc.
    Inventor: Werner Juengling
  • Patent number: 7601598
    Abstract: The present invention teaches a method of forming a MOSFET transistor having a silicide gate which is not subject to problems produced by etching a metal containing layer when forming the gate stack structure. A gate stack is formed over a semiconductor substrate comprising a gate oxide layer, a conducting layer, and a first insulating layer. Sidewall spacers are formed adjacent to the sides of the gate stack structure and a third insulating layer is formed over the gate stack and substrate. The third insulating layer and first insulating layer are removed to expose the conducting layer and, at least one unetched metal-containing layer is formed over and in contact with the conducting layer. The gate stack structure then undergoes a siliciding process with different variations to finally form a silicide gate.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: October 13, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Werner Juengling, Richard H. Lane
  • Publication number: 20090251946
    Abstract: Disclosed are methods and devices, among which is a device that includes a first semiconductor fin having a first gate, a second semiconductor fin adjacent the first semiconductor fin and having a second gate, and a third gate extending between the first semiconductor fin and the second semiconductor fin. In some embodiments, the third gate may not be electrically connected to the first gate or the second gate.
    Type: Application
    Filed: April 3, 2008
    Publication date: October 8, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Werner Juengling