Patents by Inventor Werner Juengling

Werner Juengling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150093869
    Abstract: A semiconductor device is provided that includes a fin having a first gate and a second gate formed on a first sidewall of the fin in a first trench, wherein the first gate is formed above the second gate. The device includes a third gate and a fourth gate formed on a second sidewall of the fin in a second trench, wherein the third gate is formed above the fourth gate. Methods of manufacturing and operating the device are also included. A method of operation may include biasing the first gate and the fourth gate to create a current path across the fin.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 2, 2015
    Inventors: Werner Juengling, Howard C. Kirsch
  • Patent number: 8962401
    Abstract: A semiconductor device is provided that includes a fin having a first gate and a second gate formed on a first sidewall of the fin in a first trench, wherein the first gate is formed above the second gate. The device includes a third gate and a fourth gate formed on a second sidewall of the fin in a second trench, wherein the third gate is formed above the fourth gate. Methods of manufacturing and operating the device are also included. A method of operation may include biasing the first gate and the fourth gate to create a current path across the fin.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: February 24, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Werner Juengling, Howard C. Kirsch
  • Patent number: 8966418
    Abstract: An approach for methodology, and an associated system, enabling a prioritizing of devices, circuits, and modules of interest is disclosed. Embodiments include: determining a first electrical layout indicating an electrical performance of a physical layout of an IC design, the first electrical layout indicating a plurality of devices of the physical layout; selecting a subset of the plurality of the devices based on one or more connections of the devices; and generating a second electrical layout indicating the electrical performance of the physical layout, the second electrical layout indicating the selected devices without at least one of the plurality of devices.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 24, 2015
    Assignee: Globalfoundries Inc.
    Inventors: Niladri Mojumder, Bipul Paul, Anurag Mittal, Werner Juengling
  • Patent number: 8946050
    Abstract: A method is provided for forming SRAM cells with low energy implants. Embodiments include forming deep trenches in a silicon substrate; forming a deep n-well or deep p-well around a bottom of each deep trench; filling the deep trenches with oxide; forming a first or second shallow trench between each pair of adjacent deep trenches; forming a first p-well or first n-well, respectively, above each deep n-well or p-well; forming a second n-well at a bottom of each first shallow trench; forming a p+ region above each second n-well on each side of each first shallow trench; filling the first shallow trenches with oxide; forming a second p-well at a bottom of each second shallow trench; filling the second shallow trenches with oxide; forming a p+ region above each second n-well on each side of each first shallow trench; and forming an n+ region above each second p-well.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: February 3, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Werner Juengling
  • Patent number: 8933508
    Abstract: A recessed transistor construction is formed between a first access transistor construction and a second access transistor construction to provide isolation between the access transistor constructions of a memory device. In some embodiments, a gate of the recessed transistor construction is grounded. In an embodiment, the access transistor constructions are recess access transistors. In an embodiment, the memory device is a DRAM. In another embodiment, the memory device is a 4.5F2 DRAM cell.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 13, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20150008535
    Abstract: Disclosed are methods, systems and devices, including a method that includes the acts of etching an inter-row trench in a substrate, substantially or entirely filling the inter-row trench with a dielectric material, and forming a fin and a insulating projection at least in part by etching a gate trench in the substrate. In some embodiments, the insulating projection includes at least some of the dielectric material in the inter-row trench.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 8, 2015
    Inventor: Werner Juengling
  • Patent number: 8921899
    Abstract: A semiconductor device is provided that includes a fin having a first gate and a second gate formed on a first sidewall of the fin in a first trench, wherein the first gate is formed above the second gate. The device includes a third gate and a fourth gate formed on a second sidewall of the fin in a second trench, wherein the third gate is formed above the fourth gate. Methods of manufacturing and operating the device are also included. A method of operation may include biasing the first gate and the fourth gate to create a current path across the fin.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: December 30, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Werner Juengling, Howard C. Kirsch
  • Patent number: 8916912
    Abstract: A method used in fabrication of a recessed access device transistor gate has increased tolerance for mask misalignment. One embodiment of the invention comprises forming a vertical spacing layer over a semiconductor wafer, then etching the vertical spacing layer and the semiconductor wafer to form a recess in the wafer. A conductive transistor gate layer is then formed within the trench and over the vertical spacing layer. The transistor gate layer is etched, which exposes the vertical spacing layer. A spacer layer is formed over the etched conductive gate layer and over the vertical spacing layer, then the spacer layer and the vertical spacing layer are anisotropically etched. Subsequent to anisotropically etching the vertical spacing layer, a portion of the vertical spacing layer is interposed between the semiconductor wafer and the etched conductive transistor gate layer in a direction perpendicular to the plane of a major surface of the semiconductor wafer.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 23, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8877588
    Abstract: One method includes forming first and second spaced-apart trenches extending at least partially into a semiconducting substrate defining a fin structure for the device, forming a stress-inducing material having a first type of stress in the first trench, forming a second stress-inducing material in the second trench, the second stress-inducing material having a second stress that is a different than the first type of stress, and forming a gate structure around a portion of the fin structure. One device includes first and second spaced-apart trenches in a semiconducting substrate defining at least a portion of a fin for the device, a stress-inducing material having a first type of stress in the first trench, a second stress-inducing material in the second trench, the second stress-inducing material having a second stress that is a different type than the first stress, and a gate structure around a portion of the fin structure.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: November 4, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Daniel T. Pham, Werner Juengling, William J. Taylor, Jr., Robert Miller
  • Patent number: 8877639
    Abstract: An embodiment of a system and method produces a random half pitched interconnect layout. A first normal-pitch mask and a second normal-pitch mask are created from a metallization layout having random metal shapes. The lines and spaces of the first mask are printed at normal pitch and then the lines are shrunk to half pitch on mask material. First spacers are used to generate a half pitch dimension along the outside of the lines of the first mask. The mask material outside of the first spacer pattern is partially removed. The spacers are removed and the process is repeated with the second mask. The mask material remains at the locations of first set of spacers and/or the second set of spacers to create a half pitch interconnect mask with constant spaces.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 4, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8866254
    Abstract: Disclosed are methods, systems and devices, including a method that includes the acts of etching an inter-row trench in a substrate, substantially or entirely filling the inter-row trench with a dielectric material, and forming a fin and a insulating projection at least in part by etching a gate trench in the substrate. In some embodiments, the insulating projection includes at least some of the dielectric material in the inter-row trench.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: October 21, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8859359
    Abstract: Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: October 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak, Werner Juengling
  • Publication number: 20140293720
    Abstract: A method of equilibrating digit lines, a memory array, device, system and wafer for digit lines configured in an open digit line architecture. The digit lines are equilibrated by coupling a terminated end of a first digit line to an equilibration reference and coupling an unterminated end of a second digit line to the terminated end of the first digit line. The memory array is configured with the first and second digit lines arranged directly adjacent to each other.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventor: Werner Juengling
  • Publication number: 20140284672
    Abstract: In an embodiment of the present invention, a method comprises patterning a first plurality of semiconductor structures in an array portion of a semiconductor substrate using a first photolithographic mask. The method further comprises patterning a second plurality of semiconductor structures over a logic portion of a semiconductor substrate using a second photolithographic mask. The method further comprises patterning a sacrificial layer over the first plurality of semiconductor structures using the second photolithographic mask. The sacrificial layer is patterned simultaneously with the second plurality of semiconductor structures.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Inventor: Werner Juengling
  • Patent number: 8841715
    Abstract: Floating body cell structures including an array of floating body cells disposed on a back gate and source regions and drain regions of the floating body cells spaced apart from the back gate. The floating body cells may each include a volume of semiconductive material having a channel region extending between pillars, which may be separated by a void, such as a U-shaped trench. The floating body cells of the array may be electrically coupled to another gate, which may be disposed on sidewalls of the volume of semiconductive material or within the void therein. Methods of forming the floating body cell devices are also disclosed.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: September 23, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak, Werner Juengling
  • Patent number: 8836023
    Abstract: A recessed transistor construction is formed between a first access transistor construction and a second access transistor construction to provide isolation between the access transistor constructions of a memory device. In some embodiments, a gate of the recessed transistor construction is grounded. In an embodiment, the access transistor constructions are recess access transistors. In an embodiment, the memory device is a DRAM. In another embodiment, the memory device is a 4.5F2 DRAM cell.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: September 16, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20140252480
    Abstract: A device includes a plurality of trenches and fins defined in a substantially un-doped layer of semiconducting material, a gate insulation layer positioned on the fins and on the bottom of the trenches, a gate electrode and a device isolation structure. One method disclosed herein involves identifying a top width of each of a plurality of fins and a depth of a plurality of trenches to be formed in a substantially un-doped layer of semiconducting material, wherein, during operation, the device is adapted to operate in at least three distinguishable conditions depending upon a voltage applied to the device, performing at least one process operation to define the trenches and fins in the layer of semiconducting material, forming a gate insulation layer on the fins and on a bottom of the trenches and forming a gate electrode above the gate insulation layer.
    Type: Application
    Filed: May 21, 2014
    Publication date: September 11, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Min-hwa Chi, Werner Juengling
  • Patent number: 8829602
    Abstract: The invention includes a semiconductor structure having a gateline lattice surrounding vertical source/drain regions. In some aspects, the source/drain regions can be provided in pairs, with one of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The source/drain regions extending to the digit line can have the same composition as the source/drain regions extending to the memory storage devices, or can have different compositions from the source/drain regions extending to the memory storage devices. The invention also includes methods of forming semiconductor structures. In exemplary methods, a lattice comprising a first material is provided to surround repeating regions of a second material. At least some of the first material is then replaced with a gateline structure, and at least some of the second material is replaced with vertical source/drain regions.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: September 9, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8810310
    Abstract: A semiconductor device is disclosed having vertically stacked (also referred to as vertically offset) transistors in a semiconductor fin. The semiconductor fin may include lower transistors separated by a first trench and having a source and drain in a first doped region of the fin. The semiconductor fin also includes upper transistors vertically offset from the first transistors and separated by a second trench and having a source and drain in a second doped region of the fin. Upper and lower stacked gates may be disposed on the sidewalls of the fin, such that the lower transistors are activated by biasing the lower gates and upper transistors are activated by biasing the upper gates. Methods of manufacturing and operating the device are also disclosed.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: August 19, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20140225168
    Abstract: One method includes forming first and second spaced-apart trenches extending at least partially into a semiconducting substrate defining a fin structure for the device, forming a stress-inducing material having a first type of stress in the first trench, forming a second stress-inducing material in the second trench, the second stress-inducing material having a second stress that is a different than the first type of stress, and forming a gate structure around a portion of the fin structure. One device includes first and second spaced-apart trenches in a semiconducting substrate defining at least a portion of a fin for the device, a stress-inducing material having a first type of stress in the first trench, a second stress-inducing material in the second trench, the second stress-inducing material having a second stress that is a different type than the first stress, and a gate structure around a portion of the fin structure.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Daniel T. Pham, Werner Juengling, William J. Taylor, JR., Robert Miller