Patents by Inventor Wharton Sinkler
Wharton Sinkler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8992885Abstract: A new family of coherently grown composites of TUN and IMF zeotypes have been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1?xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to TNU-9 and IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.Type: GrantFiled: December 14, 2012Date of Patent: March 31, 2015Assignee: UOP LLCInventors: Christopher P. Nicholas, Mark A. Miller, Robert W. Broach, Wharton Sinkler
-
Publication number: 20140296602Abstract: An extruded C8 alkylaromatic isomerization catalyst is described. The catalyst has an average pore diameter in a range of about 110 ? to about 155 ? measured by BJH adsorption method and a pore volume less than about 0.62 cc/g measured by N2 porosimetry. A process for isomerizing a non-equilibrium C8 aromatic feed to provide an isomerized product is also described.Type: ApplicationFiled: May 14, 2014Publication date: October 2, 2014Applicant: UOP LLCInventors: Neelesh J. Rane, Paula Bogdan, Veronica G. Deak, Patrick Whitchurch, Karl Z. Steigleder, Marlyn A. Hamborg, Wharton Sinkler, Steven A. Bradley
-
Publication number: 20140296601Abstract: An extruded C8 alkylaromatic isomerization catalyst is described. The catalyst has an average pore diameter in a range of about 110 ? to about 155 ? measured by BJH adsorption method and a pore volume less than about 0.62 cc/g measured by N2 porosimetry. A process for isomerizing a non-equilibrium C8 aromatic feed to provide an isomerized product is also described.Type: ApplicationFiled: March 29, 2013Publication date: October 2, 2014Applicant: UOP LLCInventors: Neelesh Rane, Paula Bogdan, Veronica G. Deak, Patrick Whitchurch, Karl Z. Steigleder, Marlyn A. Hamborg, Wharton Sinkler, Steven A. Bradley
-
Patent number: 8693626Abstract: Methods are disclosed utilizing synchrotron X-ray microscopy including x-ray fluorescence and x-ray absorption spectra to probe elemental distribution and elemental speciation within a material, and particularly a solid that may have one or more elements distributed on a solid substrate. Representative materials are relatively homogeneous in composition on the macroscale but relatively heterogeneous on the microscale. The analysis of such materials, particularly on a macroscale at which their heterogeneous nature can be observed, provides valuable insights into the relationships or correlations between localized concentrations of elements and/or their species, and concentrations of other components of the materials. Sample preparation methods, involving the use of a reinforcing agent, which are advantageously used in such methods are also disclosed.Type: GrantFiled: June 17, 2011Date of Patent: April 8, 2014Assignee: UOP LLCInventors: Simon Russell Bare, Shelly D Kelly, Wharton Sinkler, Nan Greenlay
-
Publication number: 20120321039Abstract: Methods are disclosed utilizing synchrotron X-ray microscopy including x-ray fluorescence and x-ray absorption spectra to probe elemental distribution and elemental speciation within a material, and particularly a solid that may have one or more elements distributed on a solid substrate. Representative materials are relatively homogeneous in composition on the macroscale but relatively heterogeneous on the microscale. The analysis of such materials, particularly on a macroscale at which their heterogeneous nature can be observed, provides valuable insights into the relationships or correlations between localized concentrations of elements and/or their species, and concentrations of other components of the materials. Sample preparation methods, involving the use of a reinforcing agent, which are advantageously used in such methods are also disclosed.Type: ApplicationFiled: June 17, 2011Publication date: December 20, 2012Applicant: UOP LLCInventors: SIMON RUSSELL BARE, SHELLY D. KELLY, WHARTON SINKLER, NAN GREENLAY
-
Patent number: 8304593Abstract: The present invention comprises a hydrocarbon-conversion process using an improved MgAPSO-31 molecular sieve which demonstrates a favorable combination of conversion and selectivity in aromatics conversion. The sieve has a specific combination of crystal configuration, being limited in diameter and length, specified crystallinity as measured by an X-Ray Diffraction Index (XRDI), and a narrow range of magnesium content.Type: GrantFiled: February 4, 2009Date of Patent: November 6, 2012Assignee: UOP LLCInventors: Hayim Abrevaya, Julio C. Marte, Stephen T. Wilson, Susan C. Koster, John E. Bauer, Wharton Sinkler, Ben A. Wilson, Lance L. Jacobsen
-
Patent number: 7977273Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.Type: GrantFiled: April 28, 2009Date of Patent: July 12, 2011Assignee: UOP LLCInventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
-
Patent number: 7973208Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.Type: GrantFiled: April 28, 2009Date of Patent: July 5, 2011Assignee: UOP LLCInventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
-
Patent number: 7972989Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.Type: GrantFiled: April 28, 2009Date of Patent: July 5, 2011Assignee: UOP LLCInventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
-
Publication number: 20100152511Abstract: The present invention comprises a hydrocarbon-conversion process using an improved MgAPSO-31 molecular sieve which demonstrates a favorable combination of conversion and selectivity in aromatics conversion. The sieve has a specific combination of crystal configuration, being limited in diameter and length, specified crystallinity as measured by an X-Ray Diffraction Index (XRDI), and a narrow range of magnesium content.Type: ApplicationFiled: February 4, 2009Publication date: June 17, 2010Inventors: Hayim Abrevaya, Julio C. Marte, Stephen T. Wilson, Susan C. Koster, John E. Bauer, Wharton Sinkler, Ben A. Wilson, Lance L. Jacobsen
-
Publication number: 20090209798Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.Type: ApplicationFiled: April 28, 2009Publication date: August 20, 2009Inventors: WHARTON SINKLER, ROBERT W. BROACH, NATASHA ERDMAN, THOMAS M. REYNOLDS, JOHN Q. CHEN, STEPHEN T. WILSON, PAUL T. BARGER
-
Publication number: 20090209411Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.Type: ApplicationFiled: April 28, 2009Publication date: August 20, 2009Inventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
-
Publication number: 20090209406Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.Type: ApplicationFiled: April 28, 2009Publication date: August 20, 2009Inventors: WHARTON SINKLER, ROBERT W. BROACH, NATASHA ERDMAN, THOMAS M. REYNOLDS, JOHN Q. CHEN, STEPHEN T. WILSON, PAUL T. BARGER
-
Patent number: 7547812Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.Type: GrantFiled: June 30, 2005Date of Patent: June 16, 2009Assignee: UOP LLCInventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
-
Publication number: 20070004950Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.Type: ApplicationFiled: June 30, 2005Publication date: January 4, 2007Inventors: Wharton Sinkler, Robert Broach, Natasha Erdman, Thomas Reynolds, John Chen, Stephen Wilson, Paul Barger
-
Patent number: 6752980Abstract: An aluminosilicate zeolite and substituted version designated UZM-16 have been synthesized. These zeolites are prepared using benzyltrimethyl-ammonium (BzTMA) cation or a combination of BzTMA and at least one other quaternary ammonium cation These zeolites have a structure that is related to offretite, but shows structurally different and distinct features. The UZM-16 zeolites can be dealuminated to form UZM-16HS zeolites which have different acidity, porosity and ion-exchange properties. Both UZM-16 and UZM-16HS are useful in various hydrocarbon conversion processes.Type: GrantFiled: March 21, 2003Date of Patent: June 22, 2004Assignee: UOP LLCInventors: Jaime G. Moscoso, Wharton Sinkler, Gregory J. Lewis, Deng-Yang Jan, Susan C. Koster