Patents by Inventor Wilfred J. Samson

Wilfred J. Samson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10368837
    Abstract: In an aspect, embodiments of the invention relate to the effective and accurate placement of intravascular devices such as central venous catheters, in particular such as peripherally inserted central catheters or PICC. One aspect of the present invention relates to vascular access. It describes devices and methods for imaging guided vascular access and more effective sterile packaging and handling of such devices. A second aspect of the present invention relates to the guidance, positioning and placement confirmation of intravascular devices without the help of X-ray imaging. A third aspect of the present invention relates to devices and methods for the skin securement of intravascular devices and post-placement verification of location of such devices. A forth aspect of the present invention relates to improvement of the workflow required for the placement of intravascular devices.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: August 6, 2019
    Assignee: ARROW INTERNATIONAL, INC.
    Inventors: Sorin Grunwald, Fiona Maria Sander, Wilfred J. Samson, Bradley Hill
  • Patent number: 10321890
    Abstract: An endovascular navigation system and method are disclosed. The endovascular navigation system includes an elongate flexible member, a endovascular electrogram lead disposed at a distal end of the elongate flexible member and configured to sense an endovascular electrogram signal, a processor and an output device. The processor is configured to receive the endovascular electrogram signal, to determine a peak amplitude of a P-wave in the endovascular electrogram signal, and to determine that the position of the distal end of the elongate flexible member is within a predetermined structure within the venous vasculature of the patient. The output device is configured to display a visual indication that the distal end of the elongate flexible member is within the predetermined structure within the venous vasculature of the patient, where the visual indication is different from the endovascular electrogram signal of the venous vasculature of the patient.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: June 18, 2019
    Assignee: ARROW INTERNATIONAL, INC.
    Inventors: Sorin Grunwald, Fiona M. Sander, Wilfred J. Samson, Bradley Hill, E. Tina Cheng
  • Patent number: 10271820
    Abstract: An endovascular navigation system and method are disclosed. The endovascular navigation system includes an elongate flexible member, a endovascular electrogram lead disposed at a distal end of the elongate flexible member and configured to sense an endovascular electrogram signal, a processor and an output device. The processor is configured to receive the endovascular electrogram signal, to determine a peak amplitude of a P-wave in the endovascular electrogram signal, and to determine that the position of the distal end of the elongate flexible member is within a predetermined structure within the venous vasculature of the patient. The output device is configured to display a visual indication that the distal end of the elongate flexible member is within the predetermined structure within the venous vasculature of the patient, where the visual indication is different from the endovascular electrogram signal of the venous vasculature of the patient.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: April 30, 2019
    Assignee: ARROW INTERNATIONAL, INC.
    Inventors: Sorin Grunwald, Fiona M. Sander, Wilfred J. Samson, Bradley Hill, E. Tina Cheng
  • Publication number: 20170035392
    Abstract: An endovascular navigation system and method are disclosed. The endovascular navigation system includes an elongate flexible member configured to access the venous vasculature of a patient, a processor, and a display. The elongate flexible member includes an endovascular electrogram lead disposed at a distal end of the elongate flexible member and configured to sense an endovascular electrogram signal of the venous vasculature of the patient, and a first wireless interface configured to wirelessly transmit the endovascular electrogram signal to the processor. The processor includes a second wireless interface configured to wirelessly receive the endovascular electrogram signal from the elongate flexible member. The processor is configured to determine that the position of the distal end of the elongate flexible member is within a predetermined structure within the venous vasculature of the patient.
    Type: Application
    Filed: October 23, 2016
    Publication date: February 9, 2017
    Inventors: Sorin Grunwald, Fiona M. Sander, Wilfred J. Samson, Bradley Hill, E. Tina Cheng
  • Publication number: 20160220226
    Abstract: In an aspect, embodiments of the invention relate to the effective and accurate placement of intravascular devices such as central venous catheters, in particular such as peripherally inserted central catheters or PICC. One aspect of the present invention relates to vascular access. It describes devices and methods for imaging guided vascular access and more effective sterile packaging and handling of such devices. A second aspect of the present invention relates to the guidance, positioning and placement confirmation of intravascular devices without the help of X-ray imaging. A third aspect of the present invention relates to devices and methods for the skin securement of intravascular devices and post-placement verification of location of such devices. A forth aspect of the present invention relates to improvement of the workflow required for the placement of intravascular devices.
    Type: Application
    Filed: April 6, 2016
    Publication date: August 4, 2016
    Inventors: Sorin Grunwald, Fiona Maria Sander, Wilfred J. Samson, Bradley Hill
  • Publication number: 20160143560
    Abstract: An endovascular navigation system and method are disclosed. The endovascular navigation system includes an elongate flexible member configured to access the venous vasculature of a patient, a endovascular electrogram lead disposed at a distal end of the elongate flexible member and configured to sense an endovascular electrogram signal of the venous vasculature of the patient, a processor and an output device. The processor is configured to receive the endovascular electrogram signal, to determine a peak amplitude of a P-wave in the endovascular electrogram signal, and to determine that the position of the distal end of the elongate flexible member is within a predetermined structure within the venous vasculature of the patient.
    Type: Application
    Filed: January 28, 2016
    Publication date: May 26, 2016
    Inventors: Sorin GRUNWALD, Fiona M. SANDER, Wilfred J. SAMSON, Bradley HILL, E. Tina CHENG
  • Patent number: 8597193
    Abstract: An endovascular access and guidance system has an elongate body with a proximal end and a distal end; a non-imaging ultrasound transducer on the elongate body configured to provide in vivo non-image based ultrasound information of the vasculature of the patient; an endovascular electrogram lead on the elongate body in a position that, when the elongate body is in the vasculature, the endovascular electrogram lead electrical sensing segment provides an in vivo electrogram signal of the patient; a processor configured to receive and process a signal from the non-imaging ultrasound transducer and a signal from the endovascular electrogram lead; and an output device configured to display a result of information processed by the processor.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 3, 2013
    Assignee: VasoNova, Inc.
    Inventors: Sorin Grunwald, Fiona Maria Sander, Wilfred J. Samson, Bradley Hill, E. Tina Cheng
  • Publication number: 20130289417
    Abstract: Systems and methods for determining the position of an endovascular device within the body are provided. The system can include a catheter having a tip portion that can generate sound waves which can be detected by auscultation devices which allows the position of the catheter tip to be triangulated. The acoustic triangulation system can be used in conjunction with ECG and/or ultrasound information to further refine the location of the catheter tip.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 31, 2013
    Inventors: Sorin GRUNWALD, Fiona M. Sander, Wilfred J. Samson, Bradley Hill, E. Tina Cheng
  • Publication number: 20130123888
    Abstract: Methods and apparatus for generating vapor within a catheter are provided which may include any number of features. One feature is generating vapor with a fiber optic, laser fiber optic, or fiber optic bundle within a catheter. Another feature is sensing a temperature of the fiber optic, and adjusting the power delivered to the electrode array to fully generate vapor within the catheter. Another feature is delivering the vapor to a vein of a patient for vein reduction therapy.
    Type: Application
    Filed: September 20, 2010
    Publication date: May 16, 2013
    Inventors: Wilfred J Samson, Joseph M. Tartaglia, Jerome Jackson, Steven H. Trebotich, Grant Michael Glaze, Chun-Chih Cheng
  • Publication number: 20090118612
    Abstract: In an aspect, embodiments of the invention relate to the effective and accurate placement of intravascular devices such as central venous catheters, in particular such as peripherally inserted central catheters or PICC. One aspect of the present invention relates to vascular access. It describes devices and methods for imaging guided vascular access and more effective sterile packaging and handling of such devices. A second aspect of the present invention relates to the guidance, positioning and placement confirmation of intravascular devices without the help of X-ray imaging. A third aspect of the present invention relates to devices and methods for the skin securement of intravascular devices and post-placement verification of location of such devices. A forth aspect of the present invention relates to improvement of the workflow required for the placement of intravascular devices.
    Type: Application
    Filed: June 26, 2008
    Publication date: May 7, 2009
    Inventors: Sorin Grunwald, Fiona Maria Sander, Wilfred J. Samson, Bradley Hill
  • Publication number: 20090005675
    Abstract: An endovascular access and guidance system has an elongate body with a proximal end and a distal end; a non-imaging ultrasound transducer on the elongate body configured to provide in vivo non-image based ultrasound information of the vasculature of the patient; an endovascular electrogram lead on the elongate body in a position that, when the elongate body is in the vasculature, the endovascular electrogram lead electrical sensing segment provides an in vivo electrogram signal of the patient; a processor configured to receive and process a signal from the non-imaging ultrasound transducer and a signal from the endovascular electrogram lead; and an output device configured to display a result of information processed by the processor.
    Type: Application
    Filed: June 26, 2008
    Publication date: January 1, 2009
    Inventors: Sorin Grunwald, Fiona Maria Sander, Wilfred J. Samson, Bradley Hill, E. Tina Cheng
  • Patent number: 6835188
    Abstract: The present invention relates to a catheter or cannula system that facilitates cardiopulmonary bypass surgeries and enables prolonged circulatory support of the heart. More specifically, the present invention provides an aortic catheter system including a porous aortic root balloon capable of occluding the aorta, delivering cardioplegia and providing tactile feedback and helping to maintain the competency of regurgitant aortic valves.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: December 28, 2004
    Assignee: Cardeon Corporation
    Inventors: Wilfred J. Samson, Janine Robinson, Steve Baker, James J. Leary
  • Publication number: 20040158191
    Abstract: An apparatus and method are described for efficiently cooling the myocardium while minimizing blood dilution as well as volume buildup within the patient. A flow of cooled fluid is conducted through a percutaneously introduced catheter into the aorta where only a portion thereof is discharged while the remainder is withdrawn from the patient. The much greater flow rate through the catheter that can thereby be maintained without adverse physiological effect serves to minimize the heat gained by the fluid as a result of the catheter's immersion in blood at body temperature. By arranging the catheter such that the return flow surrounds and thereby insulates the supply flow, even colder fluid can be delivered to the myocardium.
    Type: Application
    Filed: February 4, 2004
    Publication date: August 12, 2004
    Inventors: Wilfred J. Samson, Hoa Nguyen, Huu Nguyen, Brady Esch, Janine Robinson
  • Patent number: 6726651
    Abstract: The present invention provides methods, systems and devices for performing cardipulmonary bypass (CPB), cardioplegic arrest, suction of fluid from the aorta to remove embolic or other fluid from the general circulation and the selective segmentation of the arterial system to perform differential perfusion eliminating hypoperfusion. An aortic catheter having an arch lumen which extends at least in part along the length of the catheter shaft has a proximal opening coupled to a CPB machine and a distal arch opening. A corporeal lumen extends at least in part along the length of the catheter shaft and has a proximal opening coupled to a CPB machine and a distal corporeal opening. A suction lumen extends at least in part along the length of the catheter shaft and has a proximal suction opening coupled to a suction source and a distal suction opening residing in the aortic lumen of a patient.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: April 27, 2004
    Assignee: Cardeon Corporation
    Inventors: Janine Robinson, Wilfred J. Samson, John A. Macoviak, Lisa M. Young, Brady Esch, Mike Lee, Eric Olsen
  • Patent number: 6702773
    Abstract: A system for establishing differential perfusion without the use of an occlusion balloon or other flow separator devices. The flows through two lumens are controlled such that the blood flow issuing from one lumen terminating in the aortic arch supplies the entire demand of the cerebral subcirculation while the blood flow issuing from a second lumen terminating in the descending aorta supplies the entire demand of the corporeal subcirculation. When the two flows are properly balanced, an inversion layer forms therebetween and no intermixing of the two flows takes place.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: March 9, 2004
    Assignee: Cardeon Corporation
    Inventors: John Macoviak, Brady Esch, Mike Lee, Wilfred J. Samson
  • Patent number: 6695811
    Abstract: A method and device for perfusing an organ system is provided. The device may be further described as a catheter or cannula with an expandable flow control member positioned of the distal portion of the catheter shaft. The flow control member has a porous portion, and at least one impermeable portion, which prevent fluid from flowing out the ends of the flow control member. The flow control member is further characterized as having an interior chamber that is in fluid communication with a perfusion lumen that extends along the length of the catheter shaft and is in fluid communication with an external perfusion pump. The perfusion lumen is configured for providing flow to the interior of the flow control member, to create radial expansion thereof and to provide adequate flow to the arch vessels through said porous portion to sustain the metabolic demands of the brain.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: February 24, 2004
    Assignee: Cardeon Corporation
    Inventors: Wilfred J. Samson, John A. Macoviak
  • Patent number: 6695864
    Abstract: An aortic shunt apparatus and methods for cerebral embolic protection are described for isolating the aortic arch vessels from the aortic lumen, for selectively perfusing the arch vessels with a fluid and for redirecting blood flow within the aortic lumen and any potential embolic materials carried in the blood through a shunt past the isolated arch vessels. The perfusion shunt apparatus may be mounted on a catheter or cannula for percutaneous introduction or for direct insertion into the aorta. The perfusion shunt apparatus has application for protecting a patient from embolic stroke and hypoperfusion during cardiopulmonary bypass or cardiac surgery and also for selectively perfusing the cerebrovascular circulation with oxygenated blood or with neuroprotective fluids in the presence of risk factors, such as head trauma or cardiac insufficiency. The perfusion shunt apparatus will also find application for selective perfusion of other organ systems within the body.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: February 24, 2004
    Assignee: Cardeon Corporation
    Inventors: John A. Macoviak, Wilfred J. Samson, James J. Leary, Brady D. Esch
  • Patent number: 6673042
    Abstract: The cannula of the present invention is useful for standard gravity drainage or vacuum assisted/suction drainage. The cannula of the present invention has a flexible shaft composed of a tubular body and an expandable scaffolding. The expandable scaffolding has a contracted position, facilitating insertion into a vessel and an expanded condition configured to allow optimal drainage in a vessel. The cannula is inserted into a vessel and navigated into an operative position within the patient's venous system. Once the cannula is in the proper position, the scaffolding is expanded either through passive, active, mechanic, hydraulic, pneumatic, thermal or electrical actuation. The cannula of the present invention is capable of expanding a collapsed vein to its normal diameter and/or capable of supporting the vein when suction is applied to the cannula to help increase fluid flow through the cannula.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: January 6, 2004
    Inventors: Wilfred J. Samson, Brady Esch, Michael J. Lee, Janine Robinson
  • Patent number: 6673040
    Abstract: A system and methods are described for performing catheter based procedures on high risk patients that mitigate the risk to the patient and extend the acceptable time window for response when emergencies or complications arise. The system is useful for stopped heart catheter procedures or as a safety backup in beating heart catheter procedures and is compatible with concurrent or sequential surgical interventions. The system combines a therapeutic or diagnostic catheter subsystem with a selective aortic perfusion and cardiopulmonary bypass subsystem. The catheter subsystem may include catheters for angioplasty, stent delivery, atherectomy, valvuloplasty or other diagnostic or therapeutic procedures.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: January 6, 2004
    Assignee: Cardeon Corporation
    Inventors: Wilfred J. Samson, John A. Macoviak
  • Patent number: 6669674
    Abstract: The present invention discloses a multi-access cannula for use in a variety of surgical procedures, particularly for use in the course of performing conventional open-chest and peripheral access cardiopulmonary bypass (CPB). The multi-access cannula is capable of being inserted through a single puncture site with a percutaneous tip. At the appropriate depth of insertion, a closure seal may be engaged at the point of entry to secure the positioning of the cannula and prevent leakage of blood from the incision. Once the cannula is at the appropriate position the cannula provides a multiplicity of procedural options for the surgeon. For example, when approaching through the ascending aorta, the multi-access cannula enables the simultaneous passage of various fluids and multiple catheters or instruments in opposing directions within the lumen of the aortic arch through a single insertion site.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: December 30, 2003
    Assignee: Cardeon Corporation
    Inventors: John A. Macoviak, Wilfred J. Samson, Lynn M. Thompson, James J. Leary