Patents by Inventor Wilfried Schmidt

Wilfried Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11189373
    Abstract: A handheld display device for processing continuous sensor data has a communication interface, a graphical user interface having a gesture recognition component, a processor and a memory. The processor continuously receives time dependent sensor data, carbohydrate data, event data, and insulin data. The event data is indicative of a physical state of the subject. The processor determines a sensor data scaling factor, a carbohydrate data scaling factor and an insulin data scaling factor. The processor controls the graphical user interface to render a plot having single time, analyte concentration, carbohydrate amount, and insulin delivery amount axes. The analyte concentration axis is rendered on a first side of the plot and carbohydrate amount and insulin delivery amount axes are rendered on an opposite side of the plot, according to the scaling factors. The graphical user interface can be controlled with single and/or double finger gestures to magnify, shrink or shift axes.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: November 30, 2021
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Wilfried Schmidt, Bernd Steiger
  • Patent number: 10568511
    Abstract: A handheld diabetes management device for managing blood glucose test data and continuous glucose monitoring data includes a port configured to receive a test strip, a wireless transceiver, a communications processor, and a user interface processor. The communications processor communicates with the wireless transceiver to periodically collect glucose measurement data from a continuous glucose monitoring device and to store the glucose measurement data in a first data storage module. The communications processor is operable to consume electrical power at a first rate. The user interface processor communicates with the communication processor to receive the glucose measurement data and operable to display the glucose measurement data on the device. The communications processor operates asynchronously from operation of the user interface processor to collect the glucose measurement data and the user interface processor operates to consume electrical power at a second rate that is higher than the first rate.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: February 25, 2020
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Timothy P. Engelhardt, Gerhard Frisch, Robert E. Reinke, Wilfried Schmidt, Michael Schoemaker, Uwe Wittmann
  • Publication number: 20190022314
    Abstract: A handheld display device for processing continuous sensor data has a communication interface, a graphical user interface having a gesture recognition component, a processor and a memory. The processor continuously receives time dependent sensor data, carbohydrate data, event data, and insulin data. The event data is indicative of a physical state of the subject. The processor determines a sensor data scaling factor, a carbohydrate data scaling factor and an insulin data scaling factor. The processor controls the graphical user interface to render a plot having single time, analyte concentration, carbohydrate amount, and insulin delivery amount axes. The analyte concentration axis is rendered on a first side of the plot and carbohydrate amount and insulin delivery amount axes are rendered on an opposite side of the plot, according to the scaling factors. The graphical user interface can be controlled with single and/or double finger gestures to magnify, shrink or shift axes.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Wilfried Schmidt, Bernd Steiger
  • Publication number: 20180116573
    Abstract: Disclosed is a portable device for processing continuous monitoring data. The portable device includes a data interface that receives a stream of continuous monitoring data from a body-worn sensor. The data is indicative of an analyte in a bodily fluid. The portable device also includes a storage device that can store the continuous monitoring data. The control processes the continuous monitoring data and is switchable between first and second modes of operation during a sensor session of the body-worn sensor. In the first mode of operation, the control is configured to provide video data indicative of the continuous monitoring data for outputting by a display. In the second mode of operation the control is configured to store the continuous monitoring data in the storage device and to block the continuous monitoring data from being displayed on the display. A related method, system and computer program product are also disclosed.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 3, 2018
    Inventors: Bernd Steiger, Wilfried Schmidt
  • Publication number: 20160367139
    Abstract: A handheld diabetes management device for managing blood glucose test data and continuous glucose monitoring data includes a port configured to receive a test strip, a wireless transceiver, a communications processor, and a user interface processor. The communications processor communicates with the wireless transceiver to periodically collect glucose measurement data from a continuous glucose monitoring device and to store the glucose measurement data in a first data storage module. The communications processor is operable to consume electrical power at a first rate. The user interface processor communicates with the communication processor to receive the glucose measurement data and operable to display the glucose measurement data on the device. The communications processor operates asynchronously from operation of the user interface processor to collect the glucose measurement data and the user interface processor operates to consume electrical power at a second rate that is higher than the first rate.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Inventors: Timothy P. ENGELHARDT, Gerhard FRISCH, Robert E. REINKE, Wilfried SCHMIDT, Michael SCHOEMAKER, Uwe WITTMANN
  • Patent number: 9504411
    Abstract: A handheld diabetes management device for managing blood glucose test data and continuous glucose monitoring data includes a port configured to receive a test strip, a wireless transceiver, a communications processor, and a user interface processor. The communications processor communicates with the wireless transceiver to periodically collect glucose measurement data from a continuous glucose monitoring device and to store the glucose measurement data in a first data storage module. The communications processor is operable to consume electrical power at a first rate. The user interface processor communicates with the communication processor to receive the glucose measurement data and operable to display the glucose measurement data on the device. The communications processor operates asynchronously from operation of the user interface processor to collect the glucose measurement data and the user interface processor operates to consume electrical power at a second rate that is higher than the first rate.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: November 29, 2016
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Timothy P. Engelhardt, Gerhard Frisch, Robert E. Reinke, Wilfried Schmidt, Michael Schoemaker, Uwe Wittmann
  • Patent number: 9385263
    Abstract: A method for producing a dopant profile is provided. The method includes starting from a surface of a wafer-shaped semiconductor component by introducing dopant atoms into the semiconductor component. The dopant-containing layer is produced on or in a region of the surface in order to produce a provisional first dopant profile and then a plurality of semiconductor components having a corresponding layer is subjected to heat treatment on top of one another in the form of a stack in order to produce a second dopant profile having a greater depth in comparison to the first dopant profile.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: July 5, 2016
    Assignee: SCHOTT SOLAR AG
    Inventors: Joerg Horzel, Dieter Franke, Gabriele Blendin, Marco Faber, Wilfried Schmidt
  • Publication number: 20150311356
    Abstract: A method for producing a crystalline solar cell having a p-doped silicon substrate with an n-doped region on the front side and also at least one antireflection layer is provided. The method includes uniformly applying a solution containing phosphoric acid to the entire front-side surface of the solar cell, forming phosphosilicate glass in a first thermal treatment step applied to the solar cell, and, in the first thermal treatment step or a subsequent thermal treatment step, forming silicon-containing precipitates near the surface with a homogeneous or substantially homogeneous surface coverage in a layer on the front-side surface of the substrate in the range of between 5% and 100%.
    Type: Application
    Filed: September 6, 2011
    Publication date: October 29, 2015
    Applicant: SCHOTT SOLAR AG
    Inventors: Henning NAGEL, Knut VAAS, Wilfried SCHMIDT
  • Patent number: 8986961
    Abstract: The invention describes a process for preparing acetone starting from acetyl-coenzyme A comprising process steps A. enzymatic conversion of acetyl-CoA into acetoacetyl-CoA B. enzymatic conversion of acetoacetyl-CoA into acetoacetate and CoA and C. decarboxylation of acetoacetate to acetone and CO2, which is characterized in that the coenzyme A is not transferred in process step B to an acceptor molecule. In addition, process step B is surprisingly catalyzed by enzymes of the classes of acyl-CoA thioesterase, acyl-CoA synthetase or acyl-CoA thiokinase. A completely novel metabolic pathway is concerned, because the enzymatic hydrolysis of acetoacetyl-CoA without simultaneous transfer of CoA to a receptor molecule has never previously been described for any microbial enzyme.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: March 24, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Stefan Verseck, Steffen Schaffer, Werner Freitag, Friedrich-Georg Schmidt, Matthias Orschel, Gerda Grund, Wilfried Schmidt, Hubert Johannes Bahl, Ralf-Joerg Fischer, Antje May, Peter Duerre, Simone Lederle
  • Publication number: 20140066735
    Abstract: A handheld diabetes management device for managing blood glucose test data and continuous glucose monitoring data includes a port configured to receive a test strip, a wireless transceiver, a communications processor, and a user interface processor. The communications processor communicates with the wireless transceiver to periodically collect glucose measurement data from a continuous glucose monitoring device and to store the glucose measurement data in a first data storage module. The communications processor is operable to consume electrical power at a first rate. The user interface processor communicates with the communication processor to receive the glucose measurement data and operable to display the glucose measurement data on the device. The communications processor operates asynchronously from operation of the user interface processor to collect the glucose measurement data and the user interface processor operates to consume electrical power at a second rate that is higher than the first rate.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: ROCHE DIAGNOSTICS OPERATIONS, INC.
    Inventors: Timothy P. Engelhardt, Gerhard Frisch, Robert E. Reinke, Wilfried Schmidt, Michael Schoemaker, Uwe Wittmann
  • Publication number: 20140000698
    Abstract: A method for producing contacts made of electrically conductive material on solar cells is provided. The method includes applying a dopant source to at least one face of a substrate; forming phosphosilicate glass by diffusing dopant into the substrate in a first thermal step; locally applying laser radiation to the substrate in regions in which the electrically conductive material is to be applied in order to form the electrically conductive contact; measuring the layer resistivity developed in the surface region of the substrate on the dopant source side; applying the electrically conductive material to the lasered areas; measuring the specific contact resistance between the lasered area and the electrically conductive material; determining a pulse energy density range of the laser beam from the measured values; applying laser radiation having a pulse energy density within the determined pulse energy density range.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 2, 2014
    Applicant: SCHOTT SOLAR AG
    Inventors: Henning Nagel, Wilfried Schmidt
  • Patent number: 8563440
    Abstract: A method for chemically treating a disc-shaped substrate having a bottom surface, a top surface and side surfaces by contacting a process medium that is fluid-chemically active with at least the bottom surface of the substrate. The substrate is moved relative to the process medium while forming a triple line between the substrate, the substrate medium and the atmosphere surrounding the substrate and medium. In order to chemically remove errors, particularly in the side surfaces, relative motion should be carried out while avoiding a contacting of the process medium with the top surface of the substrate, where the triple line is formed at a desired height of the side surface facing away from the process medium flow side in relation to the relative motion between the substrate and the process medium.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: October 22, 2013
    Assignee: Schott Solar AG
    Inventors: Andreas Teppe, Berthold Schum, Dieter Franke, Ingo Schwirtlich, Knut Vaas, Wilfried Schmidt
  • Patent number: 8481419
    Abstract: A method for producing an electrically conducting metal contact on a semiconductor component having a coating on the surface of a semiconductor substrate. In order to keep transfer resistances low while maintaining good mechanical strength, the invention proposes applying a particle-containing fluid onto the coating, where the particles contain at least metal particles and glass frits, curing the fluid while simultaneously forming metal areas in the substrate through heat treatment, removing the cured fluid and the areas of the coating covered by the fluid, and depositing, for the purposes of forming the contact without using intermediate layers, electrically conducting material from a solution onto areas of the semiconductor component in which the coating is removed while at the same time conductively connecting the metal areas present in said areas on the substrate.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: July 9, 2013
    Assignee: SHOTT Solar AG
    Inventors: Jorg Horzel, Gunnar Schubert, Stefan Dauwe, Peter Roth, Tobias Droste, Wilfried Schmidt, Ingrid Ernst
  • Patent number: 8273596
    Abstract: Process for producing strip-shaped and/or point-shaped electrically conducting contacts on a semiconductor component like a solar cell, includes the steps of applying a moist material forming the contacts in a desired striplike and/or point-like arrangement on at least one exterior surface of the semiconductor component; drying the moist material by heating the semiconductor component to a temperature T1 and keeping the semiconductor element at temperature T1 over a time t1; sintering the dried material by heating the semiconductor component to a temperature T2 and keeping the semiconductor component at temperature T2 over a time t2; cooling the semiconductor component to a temperature T3 that is equal or roughly equal to room temperature, and keeping the semiconductor component at temperature T3 over a time T3; cooling the semiconductor component to a temperature T4 with T4??35° C.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: September 25, 2012
    Assignee: Schott Solar AG
    Inventors: Henning Nagel, Wilfried Schmidt, Ingo Schwirtlich, Dieter Franke
  • Patent number: 8148191
    Abstract: The present invention relates firstly to HF/fluoride-free etching and doping media which are suitable both for the etching of inorganic layers and also for the doping of underlying layers. The present invention secondly also relates to a process in which these media are employed.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: April 3, 2012
    Assignee: Merck Patent GmbH
    Inventors: Sylke Klein, Armin Kübelbeck, Werner Stockum, Wilfried Schmidt, Berthold Schum
  • Publication number: 20110278702
    Abstract: A method for producing a dopant profile is provided. The method includes starting from a surface of a wafer-shaped semiconductor component by introducing dopant atoms into the semiconductor component. The dopant-containing layer is produced on or in a region of the surface in order to produce a provisional first dopant profile and then a plurality of semiconductor components having a corresponding layer is subjected to heat treatment on top of one another in the form of a stack in order to produce a second dopant profile having a greater depth in comparison to the first dopant profile.
    Type: Application
    Filed: December 3, 2009
    Publication date: November 17, 2011
    Inventors: Joerg Horzel, Dieter Franke, Gabriele Blendin, Marco Faber, Wilfried Schmidt
  • Publication number: 20110201196
    Abstract: A method for producing an electrically conducting metal contact on a semiconductor component having a coating on the surface of a semiconductor substrate. In order to keep transfer resistances low while maintaining good mechanical strength, the invention proposes applying a particle-containing fluid onto the coating, where the particles contain at least metal particles and glass frits, curing the fluid while simultaneously forming metal areas in the substrate through heat treatment, removing the cured fluid and the areas of the coating covered by the fluid, and depositing, for the purposes of forming the contact without using intermediate layers, electrically conducting material from a solution onto areas of the semiconductor component in which the coating is removed while at the same time conductively connecting the metal areas present in said areas on the substrate.
    Type: Application
    Filed: November 26, 2009
    Publication date: August 18, 2011
    Applicant: SCHOTT SOLAR AG
    Inventors: Jorg Horzel, Gunnar Schubert, Stefan Dauwe, Peter Roth, Tobias Droste, Wilfried Schmidt, Ingrid Ernst
  • Publication number: 20110183524
    Abstract: A method for chemically treating a disc-shaped substrate having a bottom surface, a top surface and side surfaces by contacting a process medium that is fluid-chemically active with at least the bottom surface of the substrate. The substrate is moved relative to the process medium while forming a triple line between the substrate, the substrate medium and the atmosphere surrounding the substrate and medium. In order to chemically remove errors, particularly in the side surfaces, relative motion should be carried out while avoiding a contacting of the process medium with the top surface of the substrate, where the triple line is formed at a desired height of the side surface facing away from the process medium flow side in relation to the relative motion between the substrate and the process medium. In this way, the atmosphere can be adjusted in relation to the partial pressures of the components in the process medium such that the top surface preserves hydrophobic characteristics.
    Type: Application
    Filed: September 29, 2009
    Publication date: July 28, 2011
    Applicant: SCHOTT SOLAR AG
    Inventors: Andreas Teppe, Berthold Schum, Dieter Franke, Ingo Schwirtlich, Knut Vaas, Wilfried Schmidt
  • Publication number: 20110165726
    Abstract: A method for producing at least one functional layer on at least one region of a surface of a semiconductor component by applying a liquid to at least the one region, where the functional layer has a layer thickness d1 and the liquid required for forming the functional layer having the thickness d1 has a layer thickness d2. In order that functional layers having a desired thin and uniform thickness are produced in a reproducible manner, it is proposed that the liquid is applied to the at least one region of the surface in excess with a layer thickness d3 where d3>d2 and that subsequently, either with the semiconductor component moved in translational fashion or with the semiconductor component arranged in stationary fashion, excess liquid is removed from the surface in a contactless manner to an extent such that the liquid layer has the thickness d2 or approximately the thickness d2.
    Type: Application
    Filed: August 26, 2009
    Publication date: July 7, 2011
    Applicant: SCHOTT SOLAR AG
    Inventors: Knut Vaas, Berthold Schum, Wilfried Schmidt, Dieter Franke, Ingo Schwirtlich
  • Patent number: D794068
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: August 8, 2017
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Magnus Gyllensward, Mark G. Mears, Wilfried Schmidt