Patents by Inventor William A. Wachter

William A. Wachter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8715487
    Abstract: This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: May 6, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jianxin Jason Wu, William A. Wachter, Colin L. Beswick, Edward Thomas Habib, Jr., Terry G. Roberie, Ruizhong Hu
  • Publication number: 20130131419
    Abstract: A fluid catalytic cracking catalyst exhibiting reduced coke make comprises a zeolite cracking component in a matrix of gibbsite having a median particle size of not more than 0.4 microns and preferably not more than 0.3 microns. The zeolite cracking component will normally be a faujasite, with preference to zeolite Y in its various forms such as Y, HY, REY, REHY, USY, REUSY and secondary zeolite additives may be present, including ZSM-5.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: John Scott Buchanan, William A. Wachter, Kun Wang, Kathryn L. Peretti, Daniel Mark Giaquinta, Hongyi Hou
  • Publication number: 20110224068
    Abstract: This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
    Type: Application
    Filed: February 17, 2011
    Publication date: September 15, 2011
    Applicant: W.R. Grace & Co.-Conn.
    Inventors: Edward T. Habib, JR., Ruizhong Hu, Terry G. Roberie, Jianxin Jason Wu, William A. Wachter, Colin L. Beswick
  • Publication number: 20110220549
    Abstract: This invention relates to the composition, method of making and use of a fluidized catalytic cracking (“FCC”) catalyst that is comprised of a new Y zeolite which exhibits an exceptionally low small mesoporous peak around the 40 ? (angstrom) range as determined by nitrogen adsorption measurements. FCC catalysts made from this new zeolite exhibit improved rates of heavy oil cracking heavy oil bottoms conversions and gasoline conversions. The fluidized catalytic cracking catalysts herein are particularly useful in fluidized catalytic cracking (“FCC”) processes for conversion of heavy hydrocarbon feedstocks such as gas oils and vacuum tower bottoms.
    Type: Application
    Filed: February 17, 2011
    Publication date: September 15, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jianxin Jason Wu, William A. Wachter, Colin L. Beswick, Edward Thomas Habib, JR., Terry G. Roberie, Ruizhong Hu
  • Publication number: 20110152062
    Abstract: Catalysts for experimentation are produced having a controlled matrix pore structure. The manufacturing process utilizes tape casting in the drying procedure in which a catalyst slurry is cast on a substrate and dried at a temperature of between about 50° C. to 200° C. for a period of time of about 0.1 to 1.0 hour. The dried catalyst particles can be removed from the substrate by several techniques, including scraping, burning, and deforming the substrate material, The resulting catalytic particles can be produced in an amount of about ca. 3 g to 300 g from slurries with volumes between 5 cc to 500 cc, which are suitable for small scale FCC reactors and for high throughput experimentation.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: William A. Wachter, Brenda A. Raich, Theodore E. Datz, David O. Marler, Nicholas Rollman, Jeffrey T. Elks, Gordon F. Stuntz
  • Patent number: 7867937
    Abstract: Catalysts for experimentation are produced having a controlled matrix pore structure. The manufacturing process utilizes tape casting in the drying procedure in which a catalyst slurry is cast on a substrate and dried at a temperature of between about 50° C. to 200° C. for a period of time of about 0.1 to 1.0 hour. The dried catalyst particles can be removed from the substrate by several techniques, including scraping, burning, and deforming the substrate material. The resulting catalytic particles can be produced in an amount of about ca. 3 g to 300 g from slurries with volumes between 5 cc to 500 cc, which are suitable for small scale FCC reactors and for high throughput experimentation.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: January 11, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William A. Wachter, Jeffrey T. Elks, Brenda A. Raich, Theodore E. Datz, Mary T. Van Nostrand, Gordon F. Stuntz, David O. Marler, Nicholas Rollman
  • Publication number: 20090139900
    Abstract: This invention relates to a FCC process using a mesoporous catalytic cracking catalyst. The mesoporous fluidized catalytic cracking catalyst is selective for minimizing the production of coke and light gas. The catalyst comprises at least one amorphous, porous matrix, each matrix having pores ranging in diameter from about 1 ? to about 10 ? and pores ranging in diameter from about 40 ? to about 500 ?, wherein in the pore range from 50 ? to 250 ?, there is a single maximum in differential pore volume distribution over the 50 ? to 250 ? range.
    Type: Application
    Filed: February 3, 2009
    Publication date: June 4, 2009
    Inventors: William A. Wachter, Stephen J. McCathy, Jeffrey S. Beck, David L. Stern
  • Publication number: 20090082193
    Abstract: This invention relates to a mesoporous catalytic cracking catalyst, a process for the production of such catalysts, and a process utilizing such catalysts in cracking operations. The mesoporous fluidized catalytic cracking catalyst is selective for minimizing the production of coke and light gas. The catalyst comprises an amorphous, porous matrix having pores ranging in diameter from about 1 ? to about 10 ? and ranging in diameter from about 40 ? to about 500 ?, but substantially free of pores ranging in diameter from about 10 ? to about 40 ?.
    Type: Application
    Filed: October 7, 2008
    Publication date: March 26, 2009
    Inventor: William A. Wachter
  • Patent number: 7504021
    Abstract: This invention relates to a FCC process using a mesoporous catalytic cracking catalyst. The mesoporous fluidized catalytic cracking catalyst is selective for minimizing the production of coke and light gas. The catalyst comprises at least one amorphous, porous matrix, each matrix having pores ranging in diameter from about 1 ? to about 10 ? and pores ranging in diameter from about 40 ? to about 500 ?, wherein in the pore range from 50 ? to 250 ?, there is a single maximum in differential pore volume distribution over the 50 ? to 250 ? range.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: March 17, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William A. Wachter, Stephen J. McCarthy, Jeffrey S. Beck, David L. Stern
  • Patent number: 7456123
    Abstract: This invention relates to a mesoporous catalytic cracking catalyst, a process for the production of such catalysts, and a process utilizing such catalysts in cracking operations. The mesoporous fluidized catalytic cracking catalyst is selective for minimizing the production of coke and light gas. The catalyst comprises an amorphous, porous matrix having pores ranging in diameter from about 1 ? to about 10 ? and ranging in diameter from about 40 ? to about 500 ?, but substantially free of pores ranging in diameter from about 10 ? to about 40 ?.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: November 25, 2008
    Assignee: Exxonmobil Research and Engineering Company
    Inventor: William A. Wachter
  • Publication number: 20080146435
    Abstract: Catalysts for experimentation are produced having a controlled matrix pore structure. The manufacturing process utilizes tape casting in the drying procedure in which a catalyst slurry is cast on a substrate and dried at a temperature of between about 50° C. to 200° C. for a period of time of about 0.1 to 1.0 hour. The dried catalyst particles can be removed from the substrate by several techniques, including scraping, burning, and deforming the substrate material. The resulting catalytic particles can be produced in an amount of about ca. 3g to 300g from slurries with volumes between 5 cc to 500 cc, which are suitable for small scale FCC reactors and for high throughput experimentation.
    Type: Application
    Filed: December 11, 2007
    Publication date: June 19, 2008
    Inventors: William A. Wachter, Jeffrey T. Elks, Brenda A. Raich, Theodore E. Datz, Mary T. Van Nostrand, Gordon F. Stuntz, David O. Marler, Nicholas Rollman
  • Patent number: 7261807
    Abstract: The propylene production of a fluid catalytic cracking unit employing a large pore zeolite cracking catalyst, produces more propylene by adding a naphtha cracking riser and a medium pore zeolite catalytic component to the unit, and recycling at least a portion of the naphtha crackate to the naphtha riser. The large pore size zeolite preferably comprises a USY zeolite and the medium pore size is preferably ZSM-5. Propylene production per unit of naphtha feed to the naphtha riser is maximized, by using the 60–300° F. naphtha crackate as the feed.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: August 28, 2007
    Assignee: ExxonMobil Research and Engineering Co.
    Inventors: B. Erik Henry, William A. Wachter, George A. Swan, III
  • Publication number: 20050269246
    Abstract: This invention relates to a FCC process using a mesoporous catalytic cracking catalyst. The mesoporous fluidized catalytic cracking catalyst is selective for minimizing the production of coke and light gas. The catalyst comprises at least one amorphous, porous matrix, each matrix having pores ranging in diameter from about 1 ? to about 10 ? and pores ranging in diameter from about 40 ? to about 500 ?, wherein in the pore range from 50 ? to 250 ?, there is a single maximum in differential pore volume distribution over the 50 ? to 250 ? range.
    Type: Application
    Filed: April 14, 2005
    Publication date: December 8, 2005
    Inventors: William Wachter, Stephen McCarthy, Jeffrey Beck, David Stern
  • Publication number: 20050272593
    Abstract: This invention relates to a mesoporous catalytic cracking catalyst, a process for the production of such catalysts, and a process utilizing such catalysts in cracking operations. The mesoporous fluidized catalytic cracking catalyst is selective for minimizing the production of coke and light gas. The catalyst comprises an amorphous, porous matrix having pores ranging in diameter from about 1 ? to about 10 ? and ranging in diameter from about 40 ? to about 500 ?, but substantially free of pores ranging in diameter from about 10 ? to about 40 ?.
    Type: Application
    Filed: April 14, 2005
    Publication date: December 8, 2005
    Inventor: William Wachter
  • Patent number: 6803494
    Abstract: A process for producing polypropylene from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is contacted with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures from about 500° C. to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia. The catalyst may be pre-coked with a carbonaceous feed. Alternatively, the carbonaceous feed used to coke the catalyst may be co-fed with the naphtha feed.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: October 12, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, Brian Erik Henry, Shun C. Fung
  • Publication number: 20020189973
    Abstract: The propylene production of a fluid catalytic cracking unit employing a large pore zeolite cracking catalyst, produces more propylene by adding a naphtha cracking riser and a medium pore zeolite catalytic component to the unit, and recycling at least a portion of the naphtha crackate to the naphtha riser. The large pore size zeolite preferably comprises a USY zeolite and the medium pore size is preferably ZSM-5. Propylene production per unit of naphtha feed to the naphtha riser is maximized, by using the 60-300° F. naphtha crackate as the feed.
    Type: Application
    Filed: April 24, 2002
    Publication date: December 19, 2002
    Inventors: B. Erik Henry, William A. Wachter, George A. Swan
  • Patent number: 6339180
    Abstract: A process for producing polypropylene from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is contacted with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures from about 500° C. to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: January 15, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, B. Erik Henry
  • Publication number: 20020003103
    Abstract: The propylene production of a fluid catalytic cracking unit employing a large pore zeolite cracking catalyst, produces more propylene by adding a naphtha cracking riser and a medium pore zeolite catalytic component to the unit, and recycling at least a portion of the naphtha crackate to the naphtha riser. The large pore size zeolite preferably comprises a USY zeolite and the medium pore size is preferably ZSM-5. Propylene production per unit of naphtha feed to the naphtha riser is maximized, by using the 60-300° F. naphtha crackate as the feed.
    Type: Application
    Filed: December 30, 1998
    Publication date: January 10, 2002
    Inventors: B. ERIK HENRY, WILLIAM A. WACHTER, GEORGE A. SWAN
  • Patent number: 6313366
    Abstract: A process for producing propylene from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is contacted with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures from about 500° C. to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia. A separate stream containing aromatics may be co-fed with the naphtha stream.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: November 6, 2001
    Assignee: ExxonMobile Chemical Patents, Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, Brian Erik Henry, Shun C. Fung, Tan-Jen Chen, Jay F. Carpency, Ronald G. Searle
  • Patent number: 6258257
    Abstract: A process for producing polymers from olefins selectively produced by a two stage process for selectively producing C2 to C4 olefins from a gas oil or resid is disclosed herein. The gas oil or resid is reacted in a first stage comprising a fluid catalytic cracking unit wherein it is converted in the presence of conventional large pore zeolitic catalyst to reaction products, including a naphtha boiling range stream. The naphtha boiling range stream is introduced into a second stage comprising a process unit containing a reaction zone, a stripping zone, a catalyst regeneration zone, and a fractionation zone. The naphtha feed is contacted in the reaction zone with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures ranging from about 500 to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: July 10, 2001
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: George A. Swan, III, Michael W. Bedell, Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, B. Erik Henry