Patents by Inventor William B. Weisenburgh, II

William B. Weisenburgh, II has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9839429
    Abstract: A stapling assembly system for use with a surgical stapling instrument is disclosed. The stapling assembly system comprises a shaft portion and a first replaceable cartridge jaw that comprises a first retainer configured to prevent first staple drivers from falling out of said first replaceable cartridge jaw. The stapling assembly system further comprises a second replaceable cartridge jaw that comprises a second retainer configured to prevent second staple drivers from falling out of said second replaceable cartridge jaw. The stapling assembly system further comprises a second jaw comprising an anvil, a firing member configured to engage said first staple drivers during a first firing stroke of said firing member and said second staple drivers during a second firing stroke of said firing member, and a lockout configured to selectively prevent said firing member from being advanced through a said firing stroke.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: December 12, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: William B. Weisenburgh, II, Jerome R. Morgan, Kyle P. Moore, Geoffrey C. Hueil, Mark S. Ortiz, Douglas B. Hoffman, Patrick A. Weizman, Dean B. Bruewer, Gregory B. Blair, Frederick E. Shelton, IV
  • Patent number: 9833242
    Abstract: A two-part tissue thickness compensator assembly can include a first tissue thickness compensator configured to be positioned relative to an anvil of a surgical stapler, a second tissue thickness compensator configured to be positioned relative to a staple cartridge of the surgical stapler, and a hinge connecting the first tissue thickness compensator to the second tissue thickness compensator. The first and/or second tissue thickness compensators may include additional engagement features, such as a raised ridge that engages a slot in the anvil and/or the staple cartridge. In certain embodiments, the first and/or second tissue thickness compensators may include an encasement that contains a suitable biologic agent. An end effector assembly may be provided for attachment to a surgical instrument that includes, for example, a staple cartridge, an anvil, a first tissue thickness compensator positioned on the anvil, and a second tissue thickness compensator positioned on the staple cartridge.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: December 5, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Katherine J. Schmid, Taylor W. Aronhalt, Gregory W. Johnson, John L. Stammen, Gary W. Knight, Christopher W. Widenhouse, William B. Weisenburgh, II, Stephanie A. Mutchler, Timothy S. Bedard
  • Publication number: 20170333041
    Abstract: A detachable motor-powered surgical instrument. The instrument may include a housing that includes at least one engagement member for removably attaching the housing to an actuator arrangement. A motor is supported within the housing for supplying actuation motions to various portions of a surgical end effector coupled to the housing. The housing may include a contact arrangement that is configured to permit power to be supplied to the motor only when the housing is operably attached to the actuator arrangement.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 23, 2017
    Inventors: Kyle P. Moore, Frederick E. Shelton, IV, William B. Weisenburgh, II, Jerome R. Morgan, Mark H. Ransick, Eugene L. Timperman
  • Publication number: 20170319211
    Abstract: A detachable motor-powered surgical instrument. The instrument may include a housing that includes at least one engagement member for removably attaching the housing to an actuator arrangement. A motor is supported within the housing for supplying actuation motions to various portions of a surgical end effector coupled to the housing. The housing may include a contact arrangement that is configured to permit power to be supplied to the motor only when the housing is operably attached to the actuator arrangement.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Inventors: Kyle P. Moore, Frederick E. Shelton, IV, William B. Weisenburgh, II, Jerome R. Morgan, Mark H. Ransick, Eugene L. Timperman
  • Publication number: 20170319210
    Abstract: A detachable motor-powered surgical instrument. The instrument may include a housing that includes at least one engagement member for removably attaching the housing to an actuator arrangement. A motor is supported within the housing for supplying actuation motions to various portions of a surgical end effector coupled to the housing. The housing may include a contact arrangement that is configured to permit power to be supplied to the motor only when the housing is operably attached to the actuator arrangement.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Inventors: Kyle P. Moore, Frederick E. Shelton, IV, William B. Weisenburgh, II, Jerome R. Morgan, Mark H. Ransick, Eugene L. Timperman
  • Patent number: 9801679
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device's motor can begin providing power for grasping and/or cutting tissue in response to an output from the device's sensor, the device can adjust power provided by the motor based on whether the device is clamping tissue or is being fired, the device can adjust an amount of power provided by the motor based on an amount of user-applied force to the device's actuator and/or can control drive direction of the motor based on the amount of the force, the device can maintain a force applied to the device, the device can self-shift the motor, and/or the device can adjust an amount of power provided to the device's end effector based on a degree of the end effector's closure.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: October 31, 2017
    Assignee: Ethicon LLC
    Inventors: Gregory Trees, Eric Johnson, Chad Boudreaux, Robert Laird, Rudolph Nobis, Geoffrey Strobl, Jason Lesko, John Hibner, David Yates, David Locke, William B. Weisenburgh, II, Phillip Clauda
  • Publication number: 20170296218
    Abstract: A surgical instrument includes a gripping assembly, a shaft assembly, an end effector, and a pivoting member. The gripping assembly defines a first opening for receiving a finger or a thumb of a user. The gripping assembly includes a first deformable feature that is configured to be moved in order to increase or decrease a cross-sectional area of the first opening. The shaft assembly extends distally from the gripping assembly. The end effector is positioned at a distal end of the shaft assembly and includes a first member. The pivoting member is pivotably coupled with the shaft assembly. The pivoting member is pivotable with respect to the first member of the end effector between an open position and a closed position to thereby clamp tissue between the first member and the pivoting member.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Inventors: Tony C. Siebel, William B. Weisenburgh, II, Jeffrey D. Messerly, Matthew C. Miller, Cory G. Kimball
  • Publication number: 20170258469
    Abstract: A surgical severing and stapling instrument, suitable for laparoscopic and endoscopic clinical procedures, clamps tissue within an end effector of an elongate channel pivotally opposed by an anvil. Various embodiments are configured to be operably attached to a robotic system to receive actuation/control motions therefrom.
    Type: Application
    Filed: March 27, 2017
    Publication date: September 14, 2017
    Inventors: Frederick E. Shelton, IV, Michael E. Setser, William B. Weisenburgh, II
  • Patent number: 9706991
    Abstract: A staple cartridge comprising a cartridge body is disclosed. The cartridge body may comprise a deck and a plurality of staple cavities. The cartridge body further comprises a plurality of staples removably positioned within the staple cavities, wherein each staple is movable between an unfired position and a fired position. Each staple comprises a base, a first leg extending from the base, and a second leg extending from the base, wherein the first leg and the second leg define a plane. The base comprises an offset portion which is offset with respect to the plane when the staple is in the unfired position.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: July 18, 2017
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Christopher J. Hess, Jerome R. Morgan, Frederick E. Shelton, IV, William B. Weisenburgh, II
  • Patent number: 9687272
    Abstract: Various devices are provided for allowing multiple surgical instruments to be inserted through a single surgical access device at variable angles of insertion, allowing for ease of manipulation within a patient's body while maintaining insufflation. Safety shields and release mechanisms are also provided for use with various surgical access devices.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: June 27, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Christopher W. Widenhouse, William B. Weisenburgh, II, Frederick E. Shelton, IV, David K. Norvell, Robert P. Gill, James W. Voegele, Michael A. Murray, Christopher J. Hess, Michael S. Cropper
  • Publication number: 20170164972
    Abstract: An apparatus includes a body, a shaft assembly, and an end effector. The end effector includes an ultrasonic blade and a clamp arm assembly. The ultrasonic blade is in acoustic communication with an acoustic waveguide of the shaft assembly. The clamp arm assembly is pivotable toward and away from the ultrasonic blade. The clamp arm assembly includes a clamp pad and an electrode. The clamp pad is configured to compress tissue against the ultrasonic blade. The clamp pad has a proximal end, a distal end, and a pair of lateral sides extending from the proximal end to the distal end. The electrode is operable to apply RF energy to tissue. The electrode extends along both lateral sides of the clamp pad. The electrode further extends around the distal end of the clamp pad.
    Type: Application
    Filed: November 18, 2016
    Publication date: June 15, 2017
    Inventors: Gregory W. Johnson, Jason R. Lesko, Frederick L. Estera, Amy M. Krumm, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, John A. Hibner, Joseph Isosaki, Shan Wan, Candice Otrembiak, Eitan T. Wiener, Jeffrey D. Messerly, Matthew C. Miller
  • Publication number: 20170164973
    Abstract: An apparatus includes a body, a shaft assembly, and an end effector. The end effector includes an ultrasonic blade and a clamp arm assembly. The ultrasonic blade is in acoustic communication with an acoustic waveguide of the shaft assembly. The clamp arm assembly is pivotable toward and away from the ultrasonic blade. The clamp arm assembly includes a first electrode and a second electrode. The first and second electrodes are operable to cooperate to apply bipolar RF energy to tissue.
    Type: Application
    Filed: November 18, 2016
    Publication date: June 15, 2017
    Inventors: Jason R. Lesko, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, Nathan Cummings, Ellen Gentry, William D. Dannaher, Christina M. Hough, Craig N. Faller, Adam Brown, Jeffrey D. Messerly, Kai Chen, William E. Clem
  • Publication number: 20170164997
    Abstract: An end effector of an instrument is positioned in a patient. An ultrasonic blade of the end effector is positioned against tissue in the patient. The ultrasonic blade is activated to vibrate ultrasonically while the ultrasonic blade is positioned against tissue. At least one electrode of the end effector is positioned against tissue in the patient. The at least one electrode is activated to apply RF electrosurgical energy to tissue against which the at least one electrode is positioned against tissue.
    Type: Application
    Filed: November 18, 2016
    Publication date: June 15, 2017
    Inventors: Gregory W. Johnson, Jason R. Lesko, Frederick L. Estera, Amy M. Krumm, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, John A. Hibner, Nathan Cummings, Ellen Gentry, William D. Dannaher, Christina M. Hough, Joseph Isosaki, Craig N. Faller, Shan Wan, Adam Brown, Candice Otrembiak, Eitan T. Wiener, Jeffrey D. Messerly, Kai Chen, Matthew C. Miller, William E. Clem
  • Publication number: 20170119433
    Abstract: Various devices are provided for allowing multiple surgical instruments to be inserted through a single surgical access device at variable angles of insertion, allowing for ease of manipulation within a patient's body while maintaining insufflation. Safety shields and release mechanisms are also provided for use with various surgical access devices.
    Type: Application
    Filed: January 18, 2017
    Publication date: May 4, 2017
    Inventors: Christopher W. Widenhouse, William B. Weisenburgh, II, Frederick E. Shelton, IV, David K. Norvell, Robert P. Gill, James W. Voegele, Michael A. Murray, Christopher J. Hess, Michael S. Cropper
  • Publication number: 20170105754
    Abstract: A surgical instrument includes a body, an ultrasonic blade, a clamp arm, and a resilient member. The body includes an electrical conductor and defines a longitudinal axis. The clamp arm is pivotably coupled with the body at a pivot assembly. The clamp arm is operable to compress tissue against the ultrasonic blade. The clamp arm includes an electrode operable to apply RF energy to tissue, wherein the clamp arm is configured to be loaded onto and removed from the body at the pivot assembly along a path that is transverse to the longitudinal axis defined by the body. The resilient member is located within the pivot assembly. The resilient member is configured to provide electrical continuity between the electrode of the clamp arm and the electrical conductor of the body.
    Type: Application
    Filed: October 4, 2016
    Publication date: April 20, 2017
    Inventors: Chad P. Boudreaux, Phillip H. Clauda, John B. Schulte, William B. Weisenburgh, II, Timothy S. Holland, Ryan M. Asher, Tylor C. Muhlenkamp, Brian D. Black, Kristen G. Denzinger, Amy L. Benchek
  • Patent number: 9585663
    Abstract: A surgical stapling assembly. The surgical stapling assembly comprises a frame, a distal end, a first jaw comprising a channel, and a second jaw extending from the frame. The surgical stapling assembly comprises a channel retainer, wherein the channel is slidably attachable to the channel retainer. The surgical stapling assembly further comprises a plurality of staples and a staple firing member comprising a first cam configured to engage the first jaw and a second cam configured to engage the second jaw when the staple firing member is advanced from an unadvanced position toward the distal end, wherein one of the first jaw and the second jaw comprises a clearanced opening configured to permit the firing member to be unengaged with one of the first jaw and the second jaw when the firing member is in the unadvanced position.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: March 7, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Frederick E. Shelton, IV, Michael E. Setser, William B. Weisenburgh, II
  • Patent number: 9561032
    Abstract: In various embodiments, a surgical staple cartridge is provided. The staple cartridge comprises a cartridge housing, a knife, a first row of staple pockets, a second row of staple pockets, and a third row of staple pockets. The staple cartridge further comprises a plurality of first staples, a plurality of second staples, and a plurality of third staples. The staple cartridge further comprises, one, a first staple driver oriented to drive a first staple out of the staple pockets in the first row, a second staple out of the staple pockets in the second row, and a third staple out of the staple pockets in the third row and, two, a second staple driver oriented to drive a total of four staples out of the staple pockets in the first row, the second row and the third row of staple pockets.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: February 7, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Frederick E. Shelton, IV, Michael A. Murray, Christopher J. Hess, William B. Weisenburgh, II, Jerome R. Morgan, Steven G. Hall
  • Publication number: 20170007248
    Abstract: A surgical staple including a crown and a deformable member extending from the crown, the deformable member having a notch configured to cause the deformable member to bend at the notch when the staple is deformed from a first shape into a second shape. The crown of the surgical staple, in various embodiments, further includes a forming surface, or anvil, which is configured to deform the deformable member and/or guide a distal end of the deformable member when the distal end contacts the crown.
    Type: Application
    Filed: September 23, 2016
    Publication date: January 12, 2017
    Inventors: Frederick E. Shelton, IV, Jerome R. Morgan, Christopher J. Hess, William B. Weisenburgh, II, James W. Voegele, Mak S. Ortiz, Michael J. Stokes, Carl J. Shurtleff, Jeffrey S. Swayze
  • Publication number: 20170000507
    Abstract: Methods and devices are provided for performing minimally invasive surgical procedures. In one embodiment, a surgical device is provided that include an elongate shaft having a distal portion configured to be movable between a first configuration in which the distal portion of the shaft is substantially straight or linear and a second configuration in which the distal portion of the shaft is articulated at a compound angle. The shaft's distal portion can include two articulation joints to facilitate formation of the compound angle.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Sean P. Conlon, William B. Weisenburgh, II
  • Publication number: 20170000552
    Abstract: Various forms are directed to systems and methods for dissection and coagulation of tissue. A surgical instrument includes an end effector configured to dissect and seal tissue at a distal end thereof, and a selector switch having a plurality of surgical modes. A generator is electrically coupled to the surgical instrument and is configured to deliver energy to the end effector. Each surgical mode of the selector switch corresponds to an algorithm for controlling the power delivered from the generator to the end effector, and each algorithm corresponding to the plurality of surgical modes is configured to allow a user to control the power output level of the generator.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Inventors: Ryan M. Asher, Craig N. Faller, Charles J. Scheib, Paul F. Riestenberg, Jacob S. Gee, Benjamin M. Boyd, Benjamin D. Dickerson, Rafael J. Ruiz Ortiz, William B. Weisenburgh, II, Thomas C. Gallmeyer, John A. Hibner