Patents by Inventor William B. Weisenburgh

William B. Weisenburgh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10271846
    Abstract: A staple cartridge for use with a stapling device that has an actuator that is selectively actuatable in an axial direction and an anvil portion that is selectively movable between open and closed positions is disclosed. Various embodiments of the present invention include a cartridge body that movably supports first and second staple drivers. The staple drivers each support a staple thereon and serve to drive the staples into forming contact with the anvil upon actuation by the actuator. The various embodiments of the present invention enable the final formed heights of the staples to be varied so as to apply various clamping forces and pressures to soft tissue captured within the staples. In at least one embodiment, the staples can include crowns formed thereon which can be utilized to adjust or control the clamping force and/or pressure applied by the staples.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: April 30, 2019
    Assignee: Ethicon LLC
    Inventors: Frederick E. Shelton, IV, Christopher J. Hess, William B. Weisenburgh, II, Jerome R. Morgan, Joshua R. Uth, James W. Voegele
  • Publication number: 20190117054
    Abstract: A surgical system for performing a surgical procedure includes an ex-vivo positioning mechanism and an in-vivo instrument magnetically attracted to the ex-vivo positioning mechanism. The in-vivo instrument can be positioned within a patient by moving the ex-vivo positioning mechanism. In addition, the surgical system includes a percutaneous member introducible into the patient independent from the ex-vivo positioning mechanism, the percutaneous member comprising a connector at a distal end thereof, wherein the connector is selectively couplable to the in-vivo instrument within the patient.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 25, 2019
    Inventors: William B. Weisenburgh, II, Christopher J. Hess, Ragae M. Ghabrial
  • Publication number: 20190117225
    Abstract: A detachable motor-powered surgical instrument. The instrument may include a housing that includes at least one engagement member for removably attaching the housing to an actuator arrangement. A motor is supported within the housing for supplying actuation motions to various portions of a surgical end effector coupled to the housing. The housing may include a contact arrangement that is configured to permit power to be supplied to the motor only when the housing is operably attached to the actuator arrangement.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 25, 2019
    Inventors: Kyle P. Moore, Frederick E. Shelton, IV, William B. Weisenburgh, II, Jerome R. Morgan, Mark H. Ransick, Eugene L. Timperman
  • Publication number: 20190117224
    Abstract: A surgical severing and stapling instrument, suitable for laparoscopic and endoscopic clinical procedures, clamps tissue within an end effector of an elongate channel pivotally opposed by an anvil. Various embodiments are configured to be operably attached to a robotic system to receive actuation/control motions therefrom.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 25, 2019
    Inventors: Michael E. Setser, Frederick E. Shelton, IV, William B. Weisenburgh, II
  • Patent number: 10258363
    Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: April 16, 2019
    Assignee: Ethicon LLC
    Inventors: Barry C. Worrell, Benjamin J. Danziger, Benjamin D. Dickerson, Brian D. Black, Cara L. Shapiro, Charles J. Scheib, Craig N. Faller, Daniel J. Mumaw, David J. Cagle, David T. Martin, David A. Monroe, Disha V. Labhasetwar, Foster B. Stulen, Frederick L. Estera, Geoffrey S. Strobl, Gregory W. Johnson, Jacob S. Gee, Jason R. Sullivan, Jeffrey D. Messerly, Jeffrey S. Swayze, John A. Hibner, John B. Schulte, Joseph E. Hollo, Kristen G. Denzinger, Kristen L. Pirozzi, Matthew C. Miller, Michael R. Lamping, Richard W. Timm, Rudolph H. Nobis, Ryan M. Asher, Stephen M. Leuck, Tylor C. Muhlenkamp, William B. Weisenburgh, II, William A. Olson
  • Publication number: 20190105049
    Abstract: A detachable motor-powered surgical instrument. The instrument may include a housing that includes at least one engagement member for removably attaching the housing to an actuator arrangement. A motor is supported within the housing for supplying actuation motions to various portions of a surgical end effector coupled to the housing. The housing may include a contact arrangement that is configured to permit power to be supplied to the motor only when the housing is operably attached to the actuator arrangement.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 11, 2019
    Inventors: Kyle P. Moore, Frederick E. Shelton, IV, William B. Weisenburgh, II, Jerome R. Morgan, Mark H. Ransick, Eugene L. Timperman
  • Publication number: 20190099184
    Abstract: A surgical severing and stapling instrument, suitable for laparoscopic and endoscopic clinical procedures, clamps tissue within an end effector of an elongate channel pivotally opposed by an anvil. Various embodiments are configured to be operably attached to a robotic system to receive actuation/control motions therefrom.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 4, 2019
    Inventors: Michael E. Setser, Frederick E. Shelton, IV, William B. Weisenburgh, II
  • Patent number: 10206701
    Abstract: Methods and devices are provided for performing minimally invasive surgical procedures. In one embodiment, a surgical device is provided that include an elongate shaft having a distal portion configured to be movable between a first configuration in which the distal portion of the shaft is substantially straight or linear and a second configuration in which the distal portion of the shaft is articulated at a compound angle. The shaft's distal portion can include two articulation joints to facilitate formation of the compound angle.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: February 19, 2019
    Assignee: Ethicon LLC
    Inventors: Sean P. Conlon, William B. Weisenburgh, II
  • Patent number: 10206678
    Abstract: A surgical stapling instrument is disclosed. In at least one form, the instrument comprises an end effector, an elongate shaft, and an articulation joint configured to facilitate selective articulation of the end effector in directions transverse to a longitudinal axis. The instrument further comprises a longitudinally-reciprocating firing assembly comprising a firing bar and a knife. The instrument further comprises a firing assembly lockout arrangement on one of a first jaw and a second jaw and is configured to prevent distal advancement of the knife from a starting to an ending position unless an unfired surgical staple cartridge is operably supported in the one of the first and second jaws. The instrument further comprises means for applying a firing motion to the longitudinally-reciprocating firing assembly to drive the knife from the starting to the ending position and return the knife from the ending position to the starting position.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: February 19, 2019
    Assignee: Ethicon LLC
    Inventors: Frederick E. Shelton, IV, Michael E. Setser, William B. Weisenburgh, II
  • Patent number: 10206709
    Abstract: A cannula assembly including a housing, a rotatable member, a first plurality of membranes, and a second plurality of membranes is disclosed. The housing may include a distal end defining a distal opening, wherein the distal end is configured to couple to a cannula tube aligned with the distal opening, and a proximal end defining a proximal opening. The rotatable member may be positioned within the housing and may define a passage in fluid communication with the distal opening, a first opening in fluid communication with the passage, and a second opening in fluid communication with the passage. The first plurality of membranes may be arranged as a stack at the first opening, wherein each of the first plurality of membranes defines an aperture. The second plurality of membranes may be arranged as a stack at the second opening, wherein each of the second plurality of membranes defines an aperture.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: February 19, 2019
    Assignee: Ethicon LLC
    Inventors: David B. Griffith, Sean P. Conlon, William B. Weisenburgh, II, Christopher J. Hess, Kempton K. Carroll, II
  • Publication number: 20190021718
    Abstract: Circular stapling instruments and anvil assemblies. The anvil assemblies may have collapsible anvil support members that may be inserted through an opening in a patient and then expanded to be attached to an anvil plate assembly that has a staple-forming surface thereon. The anvil support member is attachable to the anvil plate assembly in such a way that when the anvil assembly is coupled to the stapling head of a circular stapler, the staple-forming surface is in substantial registry with the staples supported in the stapling head. A variety of different anvil support members and anvil plate assemblies are disclosed.
    Type: Application
    Filed: August 9, 2018
    Publication date: January 24, 2019
    Inventors: Taylor W. Aronhalt, Frederick E. Shelton, IV, Christopher J. Schall, Joseph E. Young, Barry C. Worrell, Jerome R. Morgan, William B. Weisenburgh, II, Christopher J. Hess, Emily A. Schellin
  • Publication number: 20190021783
    Abstract: Various forms are directed to systems and methods for dissection and coagulation of tissue. A surgical instrument includes an end effector configured to dissect and seal tissue at a distal end thereof, and a selector switch having a plurality of surgical modes. A generator is electrically coupled to the surgical instrument and is configured to deliver energy to the end effector. Each surgical mode of the selector switch corresponds to an algorithm for controlling the power delivered from the generator to the end effector, and each algorithm corresponding to the plurality of surgical modes is configured to allow a user to control the power output level of the generator.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 24, 2019
    Inventors: Ryan M. Asher, Craig N. Faller, Charles J. Scheib, Paul F. Riestenberg, Jacob S. Gee, Benjamin M. Boyd, Benjamin D. Dickerson, Rafael J. Ruiz Ortiz, William B. Weisenburgh, II, Thomas C. Gallmeyer, John A. Hibner
  • Patent number: 10172616
    Abstract: A staple cartridge assembly for use with a surgical stapling instrument is disclosed. The staple cartridge assembly comprises a plurality of staples and a cartridge body. The cartridge body comprises an elongate slot extending along a first longitudinal axis between a proximal end and a distal end of the cartridge body. The cartridge body further comprises a plurality of first staple cavities arranged in a first row. Each first staple cavity defines a first axis and comprises a first proximal end portion and a first distal end portion. The cartridge body further comprises a plurality of second staple cavities arranged in a second row. Each second staple cavity defines a second axis and comprises a second proximal end portion and a second distal end portion. Each first axis and each second axis are transverse to the first longitudinal axis. Each first axis is transverse to each second axis.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: January 8, 2019
    Assignee: Ethicon LLC
    Inventors: Michael A. Murray, Jerome R. Morgan, Christopher J. Hess, William B. Weisenburgh, II, Andrew M. Zwolinski
  • Patent number: 10172636
    Abstract: A surgical apparatus comprises a body, an ultrasonic transducer, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The ultrasonic transducer is operable to convert electrical power into ultrasonic vibrations. The shaft couples the end effector and the body together. The acoustic waveguide is coupled with the transducer. The articulation section includes a collar that is located distal to a nodal portion of the waveguide and is operable to deflect the end effector away from the longitudinal axis. The end effector comprises an ultrasonic blade in acoustic communication with the ultrasonic transducer. The articulation drive assembly is operable to drive articulation of the articulation section. The articulation drive assembly comprises at least one translating articulation driver coupled with the collar. The ultrasonic blade is operable to deliver ultrasonic vibrations to tissue even when the articulation section is in an articulated state.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: January 8, 2019
    Assignee: Ethicon LLC
    Inventors: Foster B. Stulen, David A. Monroe, William B. Weisenburgh, II, Richard C. Smith, Ashvani K. Madan, Craig T. Davis, Barry C. Worrell, Benjamin D. Dickerson, Chad P. Boudreaux, Thomas C. Gallmeyer, Amy L. Benchek, Tylor C. Muhlenkamp, Sean P. Conlon, John A. Hibner
  • Publication number: 20190000452
    Abstract: A method for deforming a staple comprising a base, a first staple leg, and a second staple leg, wherein the base, the first staple leg, and the second staple leg are positioned within a common plane prior to being deformed, the method comprising positioning the first staple leg within a first cup of a staple pocket, the first cup comprising a first inner surface, applying a first compressive force to the first staple leg to bend the first staple leg toward the base and the second staple leg, contacting the first inner surface with the end of the first staple leg to bend the end of the first staple leg toward a first side of the base, and deforming the first staple leg such that the end of the first staple leg crosses a mid-line of the staple defined between the first staple leg and the second staple leg.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 3, 2019
    Inventors: Christopher J. Hess, Jerome R. Morgan, William B. Weisenburgh, II, James W. Voegele, Mark S. Ortiz, Michael J. Stokes, Carl J. Shurtleff, Frederick E. Shelton, IV, Jeffrey S. Swayze, James J. Bedi, Adam R. Dunki-Jacobs
  • Publication number: 20190000499
    Abstract: A surgical apparatus comprises a body, a user input feature, a shaft assembly, an end effector, and a blade cooling system. The end effector comprises a clamp arm and an ultrasonic blade that may be coupled with an ultrasonic transducer. The clamp arm is configured to pivot toward and away from the ultrasonic blade. The cooling system is operable to deliver liquid coolant to the ultrasonic blade to thereby cool the ultrasonic blade. The user input feature is operable to both actuate the clamp arm and actuate the cooling system.
    Type: Application
    Filed: May 7, 2018
    Publication date: January 3, 2019
    Inventors: Michael J. Stokes, Scott R. Bingham, Ryan M. Asher, Charles J. Scheib, Rudolph H. Nobis, Frederick L. Estera, Benjamin D. Dickerson, Carl J. Draginoff, JR., Jeffrey D. Messerly, David J. Cagle, Jacob S. Gee, William B. Weisenburgh, II, Omar E. Rios Perez, Chester O. Baxter, III, Karalyn R. Tellio, Benjamin M. Boyd, Rafael J. Ruiz Ortiz, Joël Fontannaz, Lukas Glutz, Amir Feriani, Emmanuel Gremion
  • Publication number: 20180333183
    Abstract: A surgical instrument includes an ultrasonic transducer, a shaft extending distally along a shaft axis, a waveguide acoustically coupled with the ultrasonic transducer and extending distally through the shaft, and an end effector at a distal end of the shaft. The end effector includes an ultrasonic blade acoustically coupled with the waveguide. A nodal support element is arranged within a distal portion of the shaft and encircles the waveguide at a distal-most acoustic node of the waveguide. The nodal support element includes a support portion aligned with the distal-most acoustic node, and a sealing portion extending axially from the support portion. The support portion engages an inner surface of the shaft and is configured to support the waveguide in coaxial alignment with the shaft axis. The sealing portion sealingly engages the inner surface of the shaft and is configured to prevent proximal ingress of fluid through the shaft.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 22, 2018
    Inventors: Frederick L. Estera, Michael A. Keenan, Craig T. Davis, William B. Weisenburgh, II, Jason R. Lesko
  • Publication number: 20180333179
    Abstract: A surgical instrument includes a shaft, an ultrasonic transducer, a waveguide, and an end effector at a distal end of the shaft. The end effector includes an ultrasonic blade acoustically coupled with the waveguide, a clamp arm movable relative to the ultrasonic blade, a first RF electrode provided by the clamp arm, and a second RF electrode provided by the ultrasonic blade. The first RF electrode is electrically coupled with a first RF electrical path of the instrument, and the second RF electrode is electrically coupled with a second RF electrical path of the instrument. The RF electrodes are operable to seal tissue with bipolar RF energy. An electrically insulative layer is provided on at least a portion of at least one of the ultrasonic blade, the waveguide, the shaft, or the clamp arm, and is configured to prevent shorting between the first and second RF electrical paths.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 22, 2018
    Inventors: William B. Weisenburgh, II, Jason R. Lesko, Catherine A. Corbett, Stephen M. Leuck, Craig T. Davis
  • Publication number: 20180333178
    Abstract: A surgical instrument includes a body, a shaft assembly rotatable relative to the body, and an end effector at a distal end of the shaft assembly and having an RF electrode operable to seal tissue with RF energy. An electrical contact assembly is arranged proximally of the end effector and is configured to electrically couple the RF electrode with an RF energy source. The electrical contact assembly includes a first electrical contact secured to the body and a second electrical contact secured to the shaft assembly. The first contact is configured to electrically couple with the RF energy source. The second contact is electrically coupled with the RF electrode and the first contact, and is configured to rotate with the shaft assembly relative to the first contact. The first and second electrical contacts are configured to remain electrically coupled throughout rotation of the shaft assembly relative to the body.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 22, 2018
    Inventors: William B. Weisenburgh, II, Catherine A. Corbett, Jason R. Lesko, Craig T. Davis
  • Patent number: 10130359
    Abstract: A method of forming a surgical staple comprising a base, a first staple leg, and a second staple leg is disclosed. The method comprises positioning the first staple leg within a first cup of a staple pocket and positioning the second staple leg within a second cup of the staple pocket, contacting the first staple leg to bend the first staple leg toward a first side of the base wherein the first staple leg is maintained in an unformed and unheated configuration until a first compressive force is applied to the first staple leg, and contacting the second staple leg to bend the second staple leg toward a second side of the base wherein the second staple leg is maintained in an unformed and unheated configuration until a second compressive force is applied to the second staple leg.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: November 20, 2018
    Assignee: Ethicon LLC
    Inventors: Christopher J. Hess, Jerome R. Morgan, William B. Weisenburgh, II, James W. Voegele, Mark S. Ortiz, Michael J. Stokes, Carl J. Shurtleff, Frederick E. Shelton, IV, Jeffrey S. Swayze, James J. Bedi, Adam R. Dunki-Jacobs