Patents by Inventor William C. Plants

William C. Plants has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11823906
    Abstract: Direct-bonded native interconnects and active base dies are provided. In a microelectronic architecture, active dies or chiplets connect to an active base die via their core-level conductors. These native interconnects provide short data paths, which forgo the overhead of standard interfaces. The system saves redistribution routing as the native interconnects couple in place. The base die may contain custom logic, allowing the attached dies to provide stock functions. The architecture can connect diverse interconnect types and chiplets from various process nodes, operating at different voltages. The base die may have state elements for drive. Functional blocks aboard the base die receive native signals from diverse chiplets, and communicate with all attached chiplets. The chiplets may share processing and memory resources of the base die. Routing blockages are minimal, improving signal quality and timing. The system can operate at dual or quad data rates.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: November 21, 2023
    Assignee: Xcelsis Corporation
    Inventors: Javier A. DeLaCruz, Steven L. Teig, Shaowu Huang, William C. Plants, David Edward Fisch
  • Publication number: 20220238339
    Abstract: Direct-bonded native interconnects and active base dies are provided. In a microelectronic architecture, active dies or chiplets connect to an active base die via their core-level conductors. These native interconnects provide short data paths, which forgo the overhead of standard interfaces. The system saves redistribution routing as the native interconnects couple in place. The base die may contain custom logic, allowing the attached dies to provide stock functions. The architecture can connect diverse interconnect types and chiplets from various process nodes, operating at different voltages. The base die may have state elements for drive. Functional blocks aboard the base die receive native signals from diverse chiplets, and communicate with all attached chiplets. The chiplets may share processing and memory resources of the base die. Routing blockages are minimal, improving signal quality and timing. The system can operate at dual or quad data rates.
    Type: Application
    Filed: February 18, 2022
    Publication date: July 28, 2022
    Applicant: Xcelsis Corporation
    Inventors: Javier A. DeLaCruz, Steven L. Teig, Shaowu Huang, William C. Plants, David Edward Fisch
  • Patent number: 11289333
    Abstract: Direct-bonded native interconnects and active base dies are provided. In a microelectronic architecture, active dies or chiplets connect to an active base die via their core-level conductors. These native interconnects provide short data paths, which forgo the overhead of standard interfaces. The system saves redistribution routing as the native interconnects couple in place. The base die may contain custom logic, allowing the attached dies to provide stock functions. The architecture can connect diverse interconnect types and chiplets from various process nodes, operating at different voltages. The base die may have state elements for drive. Functional blocks aboard the base die receive native signals from diverse chiplets, and communicate with all attached chiplets. The chiplets may share processing and memory resources of the base die. Routing blockages are minimal, improving signal quality and timing. The system can operate at dual or quad data rates.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: March 29, 2022
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, Steven L. Teig, Shaowu Huang, William C. Plants, David Edward Fisch
  • Publication number: 20200357641
    Abstract: Direct-bonded native interconnects and active base dies are provided. In a microelectronic architecture, active dies or chiplets connect to an active base die via their core-level conductors. These native interconnects provide short data paths, which forgo the overhead of standard interfaces. The system saves redistribution routing as the native interconnects couple in place. The base die may contain custom logic, allowing the attached dies to provide stock functions. The architecture can connect diverse interconnect types and chiplets from various process nodes, operating at different voltages. The base die may have state elements for drive. Functional blocks aboard the base die receive native signals from diverse chiplets, and communicate with all attached chiplets. The chiplets may share processing and memory resources of the base die. Routing blockages are minimal, improving signal quality and timing. The system can operate at dual or quad data rates.
    Type: Application
    Filed: July 31, 2020
    Publication date: November 12, 2020
    Applicant: Xcelsis Corporation
    Inventors: Javier A. Delacruz, Steven L. Teig, Shaowu Huang, William C. Plants, David Edward Fisch
  • Patent number: 10832912
    Abstract: Direct-bonded native interconnects and active base dies are provided. In a microelectronic architecture, active dies or chiplets connect to an active base die via their core-level conductors. These native interconnects provide short data paths, which forgo the overhead of standard interfaces. The system saves redistribution routing as the native interconnects couple in place. The base die may contain custom logic, allowing the attached dies to provide stock functions. The architecture can connect diverse interconnect types and chiplets from various process nodes, operating at different voltages. The base die may have state elements for drive. Functional blocks aboard the base die receive native signals from diverse chiplets, and communicate with all attached chiplets. The chiplets may share processing and memory resources of the base die. Routing blockages are minimal, improving signal quality and timing. The system can operate at dual or quad data rates.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: November 10, 2020
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, Steven L. Teig, Shaowu Huang, William C. Plants, David Edward Fisch
  • Publication number: 20200194262
    Abstract: Direct-bonded native interconnects and active base dies are provided. In a microelectronic architecture, active dies or chiplets connect to an active base die via their core-level conductors. These native interconnects provide short data paths, which forgo the overhead of standard interfaces. The system saves redistribution routing as the native interconnects couple in place. The base die may contain custom logic, allowing the attached dies to provide stock functions. The architecture can connect diverse interconnect types and chiplets from various process nodes, operating at different voltages. The base die may have state elements for drive. Functional blocks aboard the base die receive native signals from diverse chiplets, and communicate with all attached chiplets. The chiplets may share processing and memory resources of the base die. Routing blockages are minimal, improving signal quality and timing. The system can operate at dual or quad data rates.
    Type: Application
    Filed: December 30, 2019
    Publication date: June 18, 2020
    Applicant: Xcelsis Corporation
    Inventors: Javier A. DELACRUZ, Steven L. TEIG, Shaowu HUANG, William C. PLANTS, David Edward FISCH
  • Patent number: 10684929
    Abstract: This disclosure pertains to hardware compute arrays (sometimes called systolic arrays) for applications such as artificial intelligence (AI), machine learning (ML), digital signal processing (DSP), graphics processing units (GPUs), and other computationally intensive applications. More particularly, it pertains to novel and advantageous architecture innovations for efficiently and inexpensively implementing such arrays using multiple integrated circuits. Hardware and methods are disclosed to allow compute arrays to be tested after face-to-face or wafer-to-wafer bonding and without out any pre-bonding test. Defects discovered in the post-bonding testing can be completely or partially healed increasing yields and reducing costs.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: June 16, 2020
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, Steven L. Teig, David Edward Fisch, William C. Plants
  • Patent number: 10522352
    Abstract: Direct-bonded native interconnects and active base dies are provided. In a microelectronic architecture, active dies or chiplets connect to an active base die via their core-level conductors. These native interconnects provide short data paths, which forgo the overhead of standard interfaces. The system saves redistribution routing as the native interconnects couple in place. The base die may contain custom logic, allowing the attached dies to provide stock functions. The architecture can connect diverse interconnect types and chiplets from various process nodes, operating at different voltages. The base die may have state elements for drive. Functional blocks aboard the base die receive native signals from diverse chiplets, and communicate with all attached chiplets. The chiplets may share processing and memory resources of the base die. Routing blockages are minimal, improving signal quality and timing. The system can operate at dual or quad data rates.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: December 31, 2019
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, Steven L. Teig, Shaowu Huang, William C. Plants, David Edward Fisch
  • Patent number: 10409677
    Abstract: The invention pertains to semiconductor memories, and more particularly to enhancing the reliability of stacked memory devices. Apparatuses and methods are described for implementing RAID-style error correction to increase the reliability of the stacked memory devices.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: September 10, 2019
    Assignee: Invensas Corporation
    Inventor: William C. Plants
  • Patent number: 10295588
    Abstract: The invention pertains to in-wafer testing of integrated circuits. In particular, it pertains to apparatuses and methods for testing small integrated circuits that have pad sizes and pitches that are too small for using conventional wafer probing technology.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 21, 2019
    Assignee: Xcelsis Corporation
    Inventors: Javier A. Delacruz, William C. Plants
  • Patent number: 10262717
    Abstract: The invention pertains to mitigation of row hammer attacks in DRAM integrated circuits. Apparatus and methods are disclosed for an embedded target row refresh (TRR) solution with modest overhead. In operation it is nearly transparent to the user. Except for enablement via the mode register and an increase in the average refresh rate on the order of half of one percent, no further user action is required. The stream of row addresses accompanying ACTIVE commands is monitored and filtered to only track addresses that occur at a dangerous rate and reject addresses that occur at less than a dangerous rate.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: April 16, 2019
    Assignee: Invensas Corporation
    Inventors: David Edward Fisch, William C. Plants
  • Publication number: 20190012232
    Abstract: The invention pertains to semiconductor memories, and more particularly to enhancing the reliability of stacked memory devices. Apparatuses and methods are described for implementing RAID-style error correction to increase the reliability of the stacked memory devices.
    Type: Application
    Filed: September 11, 2018
    Publication date: January 10, 2019
    Applicant: Invensas Corporation
    Inventor: William C. Plants
  • Patent number: 10169143
    Abstract: The invention pertains to non-volatile memory devices, and more particularly to advantageously encoding data in non-volatile devices in a flexible manner by both NVM manufacturers and NVM users. Multiple methods of preferred state encoding (PSE) and/or error correction code (ECC) encoding may be used in different pages or blocks in the same NVM device for different purposes which may be dependent on the nature of the data to be stored.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: January 1, 2019
    Assignee: Invensas Corporation
    Inventor: William C. Plants
  • Patent number: 10083079
    Abstract: The invention pertains to semiconductor memories, and more particularly to enhancing the reliability of stacked memory devices. Apparatuses and methods are described for implementing RAID-style error correction to increase the reliability of the stacked memory devices.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: September 25, 2018
    Assignee: Invensas Corporation
    Inventor: William C. Plants
  • Publication number: 20180232273
    Abstract: The invention pertains to non-volatile memory devices, and more particularly to advantageously encoding data in non-volatile devices in a flexible manner by both NVM manufacturers and NVM users. Multiple methods of preferred state encoding (PSE) and/or error correction code (ECC) encoding may be used in different pages or blocks in the same NVM device for different purposes which may be dependent on the nature of the data to be stored.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Applicant: Invensas Corporation
    Inventor: William C. Plants
  • Patent number: 10020811
    Abstract: A random access memory circuit adapted for use in a field programmable gate array integrated circuit device is disclosed. The FPGA has a programmable array with logic modules and routing interconnects programmably coupleable to the logic modules and the RAM circuit. The RAM circuit has three ports: a first readable port, a second readable port, and a writeable port. The read ports may be programmably synchronous or asynchronous and have a programmably bypassable output pipeline register. The RAM circuit is especially well adapted for implementing register files. A novel interconnect method is also described.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: July 10, 2018
    Assignee: Microsemi SoC Corp.
    Inventors: Joel Landry, Jonathan Greene, William C. Plants, Wenyi Feng
  • Publication number: 20180180665
    Abstract: The invention pertains to in-wafer testing of integrated circuits. In particular, it pertains to apparatuses and methods for testing small integrated circuits that have pad sizes and pitches that are too small for using conventional wafer probing technology.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 28, 2018
    Applicant: Invensas Corporation
    Inventors: Javier A. DELACRUZ, William C. PLANTS
  • Patent number: 10007573
    Abstract: The invention pertains to non-volatile memory devices, and more particularly to advantageously encoding data in non-volatile devices in a flexible manner by both NVM manufacturers and NVM users. Multiple methods of preferred state encoding (PSE) and/or error correction code (ECC) encoding may be used in different pages or blocks in the same NVM device for different purposes which may be dependent on the nature of the data to be stored.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: June 26, 2018
    Assignee: Invensas Corporation
    Inventor: William C. Plants
  • Publication number: 20180173600
    Abstract: This disclosure pertains to hardware compute arrays (sometimes called systolic arrays) for applications such as artificial intelligence (AI), machine learning (ML), digital signal processing (DSP), graphics processing units (GPUs), and other computationally intensive applications. More particularly, it pertains to novel and advantageous architecture innovations for efficiently and inexpensively implementing such arrays using multiple integrated circuits. Hardware and methods are disclosed to allow compute arrays to be tested after face-to-face or wafer-to-wafer bonding and without out any pre-bonding test. Defects discovered in the post-bonding testing can be completely or partially healed increasing yields and reducing costs.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 21, 2018
    Inventors: Javier A. DELACRUZ, Steven L. TEIG, David Edward FISCH, William C. PLANTS
  • Publication number: 20180121283
    Abstract: The invention pertains to semiconductor memories, and more particularly to enhancing the reliability of stacked memory devices. Apparatuses and methods are described for implementing RAID-style error correction to increase the reliability of the stacked memory devices.
    Type: Application
    Filed: September 22, 2017
    Publication date: May 3, 2018
    Applicant: Invensas Corporation
    Inventor: William C. Plants